
Autonomous Collision Avoidance

For Small Unmanned Aerial Vehicles

Minjie Zhu

University of California, Davis

mjzhu@ucdavis.edu

Samuel Cheung

University of California, Davis

shocheung@ucdavis.edu

Abstract
The goal of this project was to program a flight controller

firmware to achieve autonomous collision avoidance (ACA) for

small unmanned aerial vehicles (UAVs). The UAV we adopted

was a quadcopter frame from Aerotestra[1]. The firmware was

developed from the existing open-source code from ardupilot

community [2]. ACA was realized by utilization of a LIDAR

sensor to measure the distance between quadcopter and the closest

object in its nose direction.

1. Introduction
A multicopter is a mechanically simple aerial vehicle whose

motion is controlled by speeding or slowing multiple downward

thrusting motor/propeller units. Unlike traditional helicopter or

fixed-wing aircraft, it does not need to vary the rotor blade pitch

angle. This simplifies the design and control of the vehicle. It is

often used in applications such as aero-photography, aerial

mapping. In our project we use a 4 propeller multicopter frame,

i.e. a quadcopter.

The existing firmware code developed by ardupilot

community supports auto-piloting feature utilizing the 3DR uBlox

GPS sensor [3]. The feature is achieved by running the

quadcopter in auto-mode. In this flight mode, the quadcopter runs

a mission by reading the pre-written GPS coordinates and

commands itself to fly towards each waypoint sequentially.

However, the existing firmware does not support any object

detection and avoidance schemes. For instance, the quadcopter

will crash into a tree if the tree stands between two waypoints.

The firmware on the Pixhawk flight controller is modified so that

it can detect the object blocking its way during a mission, avoid

the object, and continue to its next waypoint, shown in figure 1.

Implementation of this will be explained in this report.

Figure 1 Idea of ACA

2. Hardware and Software

2.1 Hardware
Quadcopter frame We use Aerotestra quadcopter model Hugo

for our project. The model includes the Foxtech 4016/380 Kv

Brushless Motor, 15’ * 5.5 carbon fiber propeller and 915 Mhz

telemetry radio link. [1]

Flight controller The 3DR Pixhawk is used for Hugo as the flight

controller. The flight controller is installed with our custom

firmware based on ArduCopter V3.3 from the Ardupilot

community. The firmware base has the essentials for the

quadcopter to fly, but has been modified to achieve our goals. [4]

Essential Flight sensors The position of the quadcopter is

obtained by the longitude and latitude from the GPS module and

the altitude is obtained from the barometer. The orientation and

rotation are known by the angular velocity and acceleration from

the three axis gyroscope and accelerometer. The electrical

compass is also needed to determine the heading. All essential

sensors except GPS are onboard.

LIDAR-Lite The LIDAR-Lite laser-based sensor is used to do

object detection and avoidance. The communication protocol it

uses is I2C. It has a very narrow beam angle of 1.5 degrees and

can detect objects from 0.2 meters up to 40 meters. The sensor has

a resolution of 1cm.

The LIDAR-Lite can be used for various applications depending

on the orientation of the sensor. If the sensor is pointing down to

the ground, it can be used for altitude. In our case, the LIDAR-

Lite sensor is mounted on the front of the quadcopter to detect

objects in the forward direction.

In order to power the sensor, we have attached 4 AA batteries in a

battery pack to supply the required 4.7 - 5.5 Volts.

2.2 Software
User interface Mission Planner is adopted to act as a ground

station for control. Flight status can be monitored on the mission

planner interface. [5]

Code Modification software Eclipse is the compiler we use to

modify and build the firmware.

2.3 Firmware Structure
The original Firmware developed by ardupilot is a well-structured

code with hierarchy. We fully understood and inherited its

structure during the project. The hierarchy of the firmware

structure is listed below, from highest level to lowest level:

Scheduler The scheduler acts as the main function that runs

repeatedly. It is also a real time operating system that assigns each

thread with a certain call frequency, priority and maximum run

time.

Flight mode controller The flight mode controller determines the

feature of quadcopter movement. At any time, the board must be

inside one of the flight modes to ensure system integrity.

Depending on the flight mode, values from remote controller

channels such as pitch/roll/yaw may be applied or ignored. The

flight modes can be changed via channel 5 of the remote

controller. Additional flight modes can be created for a more

isolated environment and more control over the quadcopter for

different applications.

Movement controller The movement controller includes four

controllers dealing with altitude, attitude, position, and waypoints.

The altitude controller uses the barometer to control the z-axis

acceleration. It tries to maintain the altitude in altitude hold

condition and also adjusts altitude if ascending/descending is

required. The attitude controller controls self-rotation and

balances the quadcopter. This is useful for balancing against wind

and motor output differences. The position controller controls

horizontal x-y axis acceleration. Lastly, the waypoint controller

works with the GPS to determine the corresponding direction and

speed in auto mode according to the preset waypoints.

Library files The library files interact with all the lower level

communication with sensors, data processing and computations,

as well as motor outputs. Examples of library files include: GPS,

LIDAR, PID control, mavlink, filter, etc.

HAL layer The HAL (hardware abstraction layer) deals with the

board I/O itself. It sets the value for digital/analog inputs and

outputs.

3. Method
For completing our object detection goal, we implemented fixes to

the LIDAR-Lite sensor, created an AI object, created various

states, and made an avoidance scheme.

3.1 LIDAR stagnancy
The LIDAR-Lite sensor has a problem dealing with objects that

are out of its range (0.2m to 40m). When the LIDAR is suddenly

pointing at something out of its range, it will keep the previous

value and will not update the latest value. For example, if the

LIDAR is pointing at an object 5 meters away and is suddenly

moved to point to something 45 meters away, the reading returned

will be 5 meters. When the sensor doesn’t update, we consider the

LIDAR reading to be stagnant. To solve this problem, we

implemented a function that filters the LIDAR sensor reading.

When the previous reading is greater than a threshold (we set it to

1 meter) and it stagnates for more than one second, we assume

that the sensor is pointing to something beyond 40 meters. We

arbitrarily interpret the reading as infinite. Conversely, when the

previous reading is less than 1 meter and it stagnates for more

than one second, we assume that the sensor is pointing to

something less than 0.2 meters. With the filter, we will always

have readings that correspond to what the LIDAR sensor detects.

Figure 2 shows the function for filtering LIDAR stagnancy

Figure 2 update_lidar function

3.2 ACA AI object
To implement the ACA feature, we create a new C++ class called

ACA_AI. All modifications to the original source code regarding

ACA is implemented and processed in this object. To minimize

interference with the other running schedules and keep the code

structure clear, the member functions in ACA object run

independently. ACA references two global variables

(sonar_distance_cm as distance measured from LIDAR sensor, and

milliseconds as system clock from flight controller), generates

corresponding RC channel values, and updates the state

iteratively. The values generated and updated are applied by the

flight mode controller in auto mode accordingly. As a whole, the

ACA AI object acts as an internal artificial intelligence (AI) that

replaces the remote control to send appropriate commands to the

quadcopter.

Figure 3 shows the file linkage relationship between ACA AI and

some other essential files/objects

Figure 3 ACA AI object

Arducopter.pde

sonar_distance_cm

milliseconds

ACA_AI.cpp
…

void update_ten_hz(int

milliseconds);

void update_lidar(int

sonar_distance_cm);

void update_state();

void apply_avoid();

void update_rc();

Process …
int wp_speed

int rc1_input

int rc2_input

int rc3_input

ACA_state current_stat

ACA_direction current_dir

…

…

Reference

Control_auto.pde
wp_nav.set_pilot_desired_acceleration

(ai.rc1_input, ai.rc2_input);

get_pilot_desired_climb_rate(ai.rc3_i

nput);

set_speed_xy(wp_speed)

Apply

3.3 State transition
ACA AI serves as a company with the normal auto mode of the

quadcopter. In normal auto mode, the quadcopter will run a flight

mission according to the pre-set way points. When the ACA AI is

activated, it will transits among four states according to the

LIDAR distance. The four states are Sleep, Slow, Halt and Avoid.

ACA AI enters Sleep state and keeps the way point speed high

when no objects is nearby. It switches to Slow state and reduces

the way point speed to be ready for object incidence when object

is sensed at a long distance. It goes into Halt state and cancels

movement in auto mode when object is sensed at a short distance.

After reassuring the object incidence is true, it activates Avoid

state to apply an avoidance scheme.

Figure 4 illustrates the state transition diagram of ACA AI

Figure 4 ACA AI state transition diagram

3.4 Avoidance scheme
After true object incidence is verified, ACA AI generates

corresponding RC channel value to command the quadcopter in

order to bypass the object. ACA AI starts with a leftward

movement, followed by a rightward movement and ended with an

upward movement. During the attempts, whenever the LIDAR

distance no longer returns a short distance for a period of time (we

set it to 3 seconds), meaning the object no longer stands in front

of the quadcopter, ACA AI attempts a forward movement to

complete the avoidance scheme. If the avoidance scheme is

applied successfully, ACA AI goes back to Halt state and is ready

to resume the previous mission. Otherwise, it keeps making avoid

attempts.

Figure 5 illustrates the timing diagram of the avoid scheme in

ACA AI

Figure 5 Avoidance scheme timing diagram

4. Results and Evaluations
The firmware we created is able to accomplish the autonomous

collision avoidance feature as expected. However, the object is

constrained to a flat surface to ensure successful avoidance. We

have made two successful experiments that demonstrate the ability

of our state transitions and avoidance scheme.

In the first experiment, the quadcopter was assigned to run a

mission on a large field. We had a person carrying a piece of

cardboard that simulates a large building. The quadcopter

attempted to avoid the object by going left, right, and finally up.

After the three attempts, it detected that there is no object and

continues to its next waypoint. Log map is shown in Figure 6.

Figure 6 Flight log of experiment on cardboard

In the second experiment, the quadcopter was assigned to run a

mission with a tree in the way. During the mission the quadcopter

automatically went around the tree that blocked its way. Log map

is shown in Figure 7.

Figure 7 Flight log of experiment on Tree

The two experiments were recorded with live video records and

screen capture of Mission Planner log. Links to the videos are

given:

experiment Live video MP log

Card board youtu.be/by2NV3cgJnc youtu.be/sbxltKb1jWo

Tree youtu.be/Y__QCXf_xPI youtu.be/IeLikO9GvX0

Pre-set path

Actual path

Object

Pre-set path Tree

Actual path

5. Additional modifications
In addition to the ACA AI object we created, we also managed to

explore some other features on the quadcopter firmware. The

other two major modifications we made were creating a new flight

mode and enabling a force landing RC command.

5.1 New flight mode – test mode
The test mode is for testing flight control algorithms and methods

in addition to the existing 16 flight modes, without interfering

other lower level functions. The algorithm we put in the test mode

is an image guided control algorithm. An FPGA board process the

image and sends corresponding commands to the quadcopter via

general purpose digital pins. [6]

5.2 Force landing RC command
The force landing RC command serves as an emergency disarm

switch for the motors. In the original firmware, the quadcopter

relies on the altitude calculated from barometer readings to disarm

the motors. In case of faulty barometer readings, the quadcopter

motors cannot be disarmed properly. With the additional force

landing RC command, quadcopter can disarm the motors

whenever the user sends the force landing command.

6. ACKNOWLEDGMENTS
Our thanks to Professor Xiaoguang Liu, the proposer and

supervisor for our project. Our sincere appreciation to Sean

Headrick, who donates his retired Hugo quadcopters to us.

More information can be found at our project website:

 minjiezhu.wordpress.com/quadcopter/

REFERENCES
[1] Aerotestra Hugo quadcopter, www.aerotestra.com

[2] Ardupilot community www.ardupilot.com

[3] 3D robotics 3drobotics.com

[4] Pixhawk pixhawk.org

[5] Mission Planner software http://planner.ardupilot.com/

[6] UC Davis ECE 181 Senior Design group on FPGA image

processing

http://www.aerotestra.com/
http://www.ardupilot.com/
http://planner.ardupilot.com/

