
Figure 1. Process of filtering image

UAV Detect and Avoid
Lindsey Raven

University of California, Davis

1 Shields Ave.

Davis, CA 95616

laraven@ucdavis.edu

Angela Tobin
University of California, Davis

1 Shields Ave.

Davis, CA 95616

ahtobin@ucdavis.edu

Christopher Bird
University of California, Davis

1 Shields Ave.

Davis, CA 95616

ckbird@ucdavis.edu

Shalmali Joshi
University of California, Davis

1 Shields Ave.

Davis, CA 95616

shajoshi@ucdavis.edu

ABSTRACT

Our project description changed and grew over time as all good

projects do, and in the end we were able to settle on and complete

our objective. Our unmanned aerial vehicle (UAV) had a camera,

LIDAR sensor, and FPGA on it which read in a video feed,

determined the location of an object and flew towards it by

signaling the flight controller. Once it was within five feet of the

object, it would stop and activate an avoidance sequence. Our

FPGA and its components correctly analyzed the video feed and

gave the correct signals to the flight controller as we were able to

demonstrate in several videos. Unfortunately the UAV itself was

not up to the task and would drift off course due to winds, weight

balance, and small GPS issues. The image processing and

coordinate locating was done mostly in the software components of

the project. Those coordinates were sent to the FPGA to determine

the next update to the flight controller through the use of the GPIO

pins. Our hardware speedup was minimal, but if we had had more

time we would have done some of the image processing on the

FPGA itself.

1. ALGORITHM
The overall aim of this project was to integrate an image processing

based collision detection system with a quadcopter’s native flight

controlling system. This was accomplished by analyzing individual

frames of a video camera feed to identify a target and then signal

the quadcopter to move so the target is centered in the frame. The

quadcopter is then signaled to continue on its forward path until a

LIDAR sensor detects that there is an obstacle within close range

of the quadcopter and triggers an avoidance sequence.

We decided to utilize image processing algorithms to detect an

object in the path of a the quadcopter. This is accomplished by

using a camera connected to an integrated ARM processor and

FPGA board called the Cubic board. This board was designed by

Bo Zhou from Altera as an alternative to the De1-SoC boards used

by the class. It allows us to be able to run a LINUX operating

system that gives us a large amount of flexibility in implementing

our algorithm while also utilizing the speed and efficiency of an

FPGA. We developed an algorithm that captures frames from an

onboard video camera and processes the frame pixel by pixel to

determine its contents. The algorithm searches for a specific

symbol of a pre-determined shape and color and identifies it within

the frame. It then determines if the quadcopter needs to change its

course based on the location of the symbol within the frame. Our

system is entirely autonomous and protects the quadcopter without

the need for human intervention.

2. IMPLEMENTATION

2.1 Image Processing
Specifically, our system uses the OpenCV image processing library

for C++ to efficiently cycle through each image and process the

pixel data in the frame. We run two modifications to the image to

determine the location of the symbol. We chose to use a large

orange-colored plus sign on either a white or black background as

the symbol for our algorithm to detect. We changed the background

color depending on the background of the environment we were

testing in. The first image modification converts the color image to

a grayscale image, and then determines if each pixel value is above

a specific threshold value. If so, the pixel is turned white; otherwise

it becomes black. The result is an image that isolates the white

background of the symbol we are looking for. The second

modification takes the original full color image and compares the

red-green-blue (RGB) values of each pixel to a set threshold to

determine if they are the color orange or not. The result is a black

and white image where orange colored objects are white and

everything else is black. The two black and white images are then

combined to result in an image that only contains the orange plus

sign symbol.

2.2 Coordinate locating and signaling
The location of the center of the plus sign within the frame is then

calculated and analyzed to determine if a signal needs to be sent to

the UAV to change its course. The system maintains the symbol in

the center of the frame until it determines the object is close enough

to need to avoid it. It communicates with the flight controller of the

quadcopter by sending high and low signals on three general

purpose input/output (GPIO) pins that are wired between the two

boards. Using a combination of the three pins allows us to have 8

signals that the UAV flight controller can interpret as a command

to go left, right, forward, back, up, down and to hover.

2.3 LIDAR
In addition to using the data from the camera, our system also

receives data from the quadcopters flight controller that indicates

distance to the object using a LIDAR sensor. We worked with two

graduate students who were using the HUGO quadcopter with a

LIDAR sensor to interface with our project. We worked with them

to develop signals that both systems would use to interpret the data

from the LIDAR. We received different signals depending on the

distance to an object from the quadcopter. The flight controller

uses two GPIO pins in combination to indicate the distance the

LIDAR sensor detects an object in front of the quadcopter and

communicate that to the system on the Cubic board. This is a

feature added to our system to increase its accuracy in determining

when to avoid an object.

2.4 Hardware/Software Interface
The hardware/software interface was done using Qsys modules

through Quartus. We implemented modules that would activate

GPIO pins on the cubic board to receive LIDAR data on two pins

and to output signals to the flight controller on 3 pins. The standard

modules that were generated were then modified to work with the

Cubic board as it had pin assignments that were not standard in

Quartus. The main issues with this was getting the correct pins

activated to use for the LIDAR input and the flight controller

output. These pins had to be designated specifically as either input

or output pins while generating the component. The other part of

the hardware/software interface was the camera we used. We

decided to use an IP Camera that would be able to connect to our

board using Ethernet instead of a USB port. This was done because

Ethernet is a faster mode of transportation than USB and so that

we did not have to deal with porting USB drivers onto our board.

The camera connects to our board via a standard Ethernet cable and

a crossover adapter that allows us to read the data from the camera

without connecting to an Ethernet switch.

2.5 Memory Management
Memory management was mainly done through the Linux hosted

operating system. By using offsetting calculations to determine the

register values and address values of key parts in memory, we can

begin to store and read images read in through the camera. Using

OpenCV mats in conjunction with these memory addresses allows

us to easily and quickly access different versions of the image in

order to process the two separate thresholds. This means that we

can manipulate the original image to process with one method and

run another image processing method on the same image without

hassle. If we had finished our hardware speed up of the image

processing, we would be able to run both of these functions at the

same time, and cut our processing time in half.

Table 1. Output signals

 Output Pins Function

0 0 0 Hover

0 0 1 Forward

0 1 0 Up

0 1 1 Down

1 0 0 Left

1 0 1 Right

1 1 0 <not used>

1 1 1 Avoid collision

3. RESULTS
Our system worked very well under our test conditions. It was very

accurate in finding the target and determining its coordinates within

the image frame. It was also very accurate at sending the right

signal to the UAV’s flight controller in order to move the UAV.

This was achieved through design decisions we made that balanced

accuracy and processing speed.

In order to smooth the movements of the UAV and ensure only one

signal was being sent at a time, we intentionally lowered how often

we calculated different frames and their coordinates. However,

once we captured a frame, we had to analyze it as quickly as

possible so the sway and movement of the UAV while hovering

didn’t throw it off. This ensured that we would be as accurate as

possible in determining the location of the target, however, we

would not be processing the video at a fast speed due to a lower

sampling rate. If we had more time we would have cut the extra

time off our processing speed, but nevertheless, it took less than

half a second to analyze each new frame and send the signal to the

flight controller. By optimizing our code had we been given more

time, we would have been able to cut the image processing time in

half.

Aside from the speed at which our code ran, the rest of the code

worked to perfection. With an accuracy of approximately 90%, our

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

code accurately determined the correct cross location and sent the

correct signals to the flight controller. This accuracy proves both

our implementation was correct, but also that the only roadblock

remaining was the speed up.

4. LESSONS LEARNED
We have learned many lessons throughout working on this project

as previously stated, but the final lessons for us to take from this is

that getting very high accuracy with a powerful image processing

library isn’t as difficult as getting that image processing to be

faster and more efficient in terms of space and complexity.

The conceptual technical lessons we learned from this project

number much higher than the specific data lessons learned. Mainly,

we should have spent most of the beginning of the project detailing

the specifications of what needed to be done, and what the exact

project specifications are. Since we did not nail down exactly what

our project was until we were underway, getting our plan approved

by multiple different advisors, mentors, and professors took much

more time than it needed to. In order to fix this for next time, we

would come up with a solid design plan, send it to the required

leaders and professors early on. Based on their feedback, we would

revise our plan until there was a solid plan that everyone agreed to

before starting to work. If we had done this, we would have had

more time for hardware speedup and testing.

In terms of advice for future students doing a similar project, we

would recommend setting strict deadlines for different parts, and

parallelizing your work more efficiently. Instead of waiting for one

member to be done with a part before starting the next, figure out

which pieces can be done at the same time and do that. If we had

been more efficient about this we could have finished much faster.

Finally, be sure to understand the full scope of the project, and be

aware that coordinating logistics for a special project is very

difficult especially if you plan on pleasing multiple parties. We

attempted to coordinate with four group members, two professors,

two teaching assistants, two Altera mentors and two graduate

students, along with university affiliates for access to testing

locations. We learned a lot about the value of getting things

clarified early on and in writing. The TAs and professors were very

helpful in guiding our group when we were struggling with defining

the project and working out the implementation details.

To ‘improve’ this project, we would recommend having clear

outlines set for independent projects that must be followed to aid

the students in deciding how to attack their project specifications. If

all of the requirements had been in writing, the group would have

been able to make sure that their project meets those requirements

before even attempting it.

5. CONTRIBUTION BREAKDOWN
OpenCV Image Processing Code- Lindsey (60), Chris (30), Angela

(10)

Hardware/Software Interface – Angela (60), Chris (30), Shalmali

(10)

Compiling Code - Lindsey (90), Chris (10)

Powerpoint presentations, reports- Shalmali (55), Chris (20),

Angela (20), Lindsey (5)

Research – Chris (25), Lindsey (25), Angela (25), Shalmali (25)

Presenting - Chris (25), Lindsey (25), Angela (25), Shalmali (25)

Coordination with outside parties - Shalmali (65), Lindsey (25),

Angela (5), Chris (5)

In our group, Chris was the strongest in FPGA resources and

hardware. Angela was strongest in logic design, flow of control,

and moral support. Lindsey was strongest in image processing code

and solving compiler issues, and had incredible dedication and

perseverance. Shalmali was strongest in coordinating the group’s

meetings with all the guides, creating and editing presentations and

other documents, and keeping each of the parts of the project

together.

6. REAL WORLD APPLICATION
In recent years the United States has been increasingly reliant

on unmanned aerial vehicles to complete tasks that are too

dangerous or impossible for humans to do. While the technology to

fly and control UAVs is fairly well established, keeping the UAVs

safe in flight is still an issue that needs to be solved. An advantage

our system has is that it is autonomous and runs without human

intervention once initialized. Therefore any sudden obstacles that

appear near a UAV can be dealt with without relying on the

reflexes of a human operator. Our implementation runs while the

quadcopter is in an autonomous mode itself where it flies along a

preset path and deviates as determined by the image processing

algorithm.

While our system is specific to the conditions we have set for its

implementation, it serves as a proof of concept that a larger scale

version of our system can work. Utilizing computer vision - based

algorithms, a system that uses visual feedback can be implemented

on larger-scale unmanned aerial vehicles. For UAVs with existing

camera or visual feedback sensors, implementing our algorithms

would eliminate the need to add additional sensors that detect the

UAV’s environment. For systems that do not already have a

camera or visual feedback sensor, implementing our system would

be a precise way to identify obstacles in the path of the UAV to a

more degree that would not be possible with other sensors.

7. ACKNOWLEDGMENTS
We would like to thank our mentors who have guided us

throughout this project. We would like to thank Professor Soheil

Ghiasi, Professor Leo Liu, Andrew Chang, Mohammed Motamedi,

Minjie Zhu, Samuel Cheung, Bo Zhou, Terry Barrette, Professor

Stephen Robinson, and Intramural Sports and Facilities.

