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Abstract—This paper addresses the analysis and design of
non-reciprocal filters based on time modulated resonators. We
analytically show that time modulating a resonator leads to a set
of harmonic resonators composed of the unmodulated lumped
elements plus a frequency invariant element that accounts for
differences in the resonant frequencies. We then demonstrate that
harmonic resonators of different order are coupled through non-
reciprocal admittance inverters whereas harmonic resonators of
the same order couple with the admittance inverter coming
from the unmodulated filter network. This coupling topology
provides useful insights to understand and quickly design non-
reciprocal filters and permits their characterization using an
asynchronously tuned coupled resonators network together with
the coupling matrix formalism. Two designed filters, of orders
three and four, are experimentally demonstrated using quarter
wavelength resonators implemented in microstrip technology and
terminated by a varactor on one side. The varactors are biased
using coplanar waveguides integrated in the ground plane of the
device. Measured results are found to be in good agreement with
numerical results, validating the proposed theory.

Index Terms—Coupling matrix, microwave filters, non reci-
procity, spatio-temporal modulation, time modulated capacitors.

I. INTRODUCTION

NON-RECIPROCAL components are of key importance
in many electronic systems, such as radar or mobile

and satellite communications [1]. Traditionally, such com-
ponents have relied on magnetic materials, such as ferrites,
under strong biasing fields. Increasingly stringent technologi-
cal demands, in constant pursuit of integration, affordability,
and miniaturization, have triggered the recent emergence of
magnetless non-reciprocal approaches to break the Lorentz
reciprocity principle [2] and the subsequent development of
devices such as circulators [3]–[13], isolators [14]–[20], and
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even non-reciprocal leaky-wave antennas [21]–[23] operating
in the absence of magneto-optical effects.

In this context, the concept of non-reciprocal filters based
on time-modulated resonators have recently been put for-
ward [24]. The operation principle behind this type of filters
relies on tailoring the non-reciprocal power transfer among
the RF and intermodulation frequencies to create construc-
tive/destructive interferences at the input/output ports. The
filters were analyzed in [24] through a dedicated spectral
domain method combined with ABCD parameters, and useful
design guidelines on how to optimize the frequency, amplitude,
and phase delay of the signals that modulate the resonators
were given. A practical prototype was also experimentally
demonstrated using varactors and lumped inductors.

In this paper, we develop a coupling matrix representation
of non-reciprocal filters based on time modulated resonators.
Starting from the initial unmodulated equivalent circuit, a
multi-harmonic equivalent network is rigorously derived, tak-
ing into account the nonlinear harmonics (also known as
intermodulation products) that are internally excited. By in-
troducing the concept of harmonic resonators, the resulting
structure is represented with a simple network based on a
specific coupled resonator topology. It is analytically shown
that resonators of identical harmonic orders are coupled with
the admittance inverters found in the original unmodulated
network while resonators of different harmonic orders are cou-
pled through non-reciprocal admittance inverters. In addition,
analytic formulas are derived to represent the new harmonic
resonators with frequency invariant susceptances [25], [26]
that account for differences in the resonant frequencies. In this
way, all the resonators of the resulting network are expressed
in terms of the original unmodulated resonators.

It is important to emphasize that the analytic calculation
of the non-reciprocal admittance inverters and frequency in-
variant susceptances for harmonic resonators, together with
the derived coupling topology, permits to analyze and design
non-reciprocal filters using an asynchronously tuned coupled
resonator network and the classical coupling matrix formalism
[26]. Here the term asynchronously tuned is used to refer
to coupling topologies having resonators tuned at different
resonant frequencies. The formalism permits to easily consider
filters of any order with an arbitrary number of nonlinear
harmonics. As detailed below, this approach also sheds light
on the underlying mechanisms that enable non-reciprocal
responses in time-modulated filters. Besides filters operating
at identical input/output frequencies, this technique can also
be applied to analyze devices that exhibit non-reciprocity
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between the fundamental frequency and desired nonlinear
harmonics. Compared to the ABCD approach presented in
[24], the analysis techniques developed in this paper provides
further insight into the frequency conversion dynamics of non-
reciprocal filters based on time modulated resonators. This
insight is reinforced with the derivation of a new equivalent
network based on coupled resonators that accurately represent
the dynamics of time modulated circuits, together with the
development of the corresponding coupling matrix formalism.
We have employed the guidelines proposed in [24] to design
the non-reciprocal filters tested in this work.

After a review of the equivalent network for coupled res-
onators filters in Section II, we introduce in Section III the
coupling matrix formalism for time-modulated filters. Nu-
merical studies are first presented, including the convergence
behavior of the scattering parameters with the number of
harmonics. To demonstrate the usefulness of the proposed
approach, in Section IV we present the design of two non-
reciprocal filters of third and fourth orders. The filters are
then experimentally demonstrated in Section V using quarter
wavelength resonators implemented in microstrip technology.
Coupled microstrip lines are terminated with varactors on one
side to build time modulated resonators. A compact structure is
obtained by integrating the feeding network of the modulating
signal in the same board as the filter. This is achieved by
using a coplanar waveguide feeding network in the ground
plane of the device. Numerical results obtained with the theory
presented in this paper show very good agreement with respect
to measurements obtained from the manufactured prototypes.

II. EQUIVALENT NETWORK OF
COUPLED RESONATORS FILTERS

Let us start from the basic ideal equivalent network of
a lossless in-line filter represented by lumped elements and
admittance inverters as shown in Fig. 1.

Fig. 1(a) shows the normalized lowpass filter prototype with
all capacitors normalized to 1 F and the source and load
impedances normalized to 1 Ω For the sake of clarity, but
without loss of generality, we consider a network composed
of three resonators (network of order N = 3). The N + 2
coupling matrix can be used to characterize this network [26],
leading to

M =


0 MP11 0 0 0

MP11 M11 M12 0 0
0 M12 M22 M23 0
0 0 M23 M33 M3P2

0 0 0 M3P2
0

 . (1)

Here we have used the notation P1 and P2 to refer to the
source S and load L terminations. This notation will be more
convenient when investigating the non-reciprocal behavior of
the network in the next section. Note that in this matrix the
diagonal elements (Mu,u with u = 1, 2, · · · , N ) represent the
frequency invariant susceptances shown in Fig. 1(a), while
the off-diagonal elements Mu,u+1 represent the values of
the admittance inverters of the network. Frequency invariant
susceptances are used in Fig. 1 to account for asynchronously
tuned topologies [26].

Fig. 1. Equivalent circuit of an ideal lossless filter based on lumped elements
and admittance inverters. (a) Normalized lowpass prototype with all elements
having unitary values. (b) Lowpass prototype scaled to arbitrary capacitance
values C and port impedances RP1

, RP2
. (c) Bandpass network resulting

from a standard lowpass to bandpass transformation.

This coupling matrix relates the currents and nodal voltages
in the normalized network shown in Fig. 1(a). The Kirchhoff’s
current law in this network can be written in matrix form as

I =
[
G+ j ω C + j M

]
· V , (2)

where the whole admittance matrix has been expressed as the
sum of three simpler matrices. In this expression C is a matrix
containing the capacitors of the network

C =


0 0 0 0 0
0 C 0 0 0
0 0 C 0 0
0 0 0 C 0
0 0 0 0 0

 (3)

and G is the so called conductance matrix, which contains the
port admittances as

G =


GP1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 GP2

 . (4)

In the network shown in Fig. 1(a), the values C = 1 F,
GP1

= 1/RP1
= 1 Ω−1, and GP2

= 1/RP2
= 1 Ω−1 are

employed. Besides, in the system of equations described in
(2), I represents the current excitation vector and V contains
the unknown nodal voltages [see Fig. 1(a)], as

I =


IP1

0
0
0
0

 , V =


VP1

V1
V2
V3
VP2

 . (5)

From this normalized network, a scaled lowpass circuit
as shown in Fig. 1(b) can be obtained. Capacitors and port
impedances are scaled to arbitrary values C and RP1

=
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Fig. 2. Coupling topology of the in-line filter shown in Fig. 1.

1/GP1
, RP2

= 1/GP2
, respectively. Note that during the

production of a particular filter, the transformation ratios C
are calculated with the information of the practical technology
that will be used during the filter implementation.

In any case, the response of the scaled network is the
same as the original network if the values of the admittance
inverters Ju,u+1 and frequency invariant susceptances Bu are
conveniently scaled as

JP11 = MP11

√
GP1

C, Ju,u+1 = Mu,u+1 C, (6a)

JNP2
= MNP2

√
C GP2

, Bu = Mu,u C, (6b)

If a standard lowpass to bandpass transformation is applied
to the network of Fig. 1(b), the capacitors are transformed into
resonators, thus obtaining the traditional bandpass network
shown in Fig. 1(c). In this network all resonators are equal
and take the values

Cp =
C

ω0 FB
, Lp =

FB

ω0 C
=

1

ω2
0 Cp

, (7a)

FB =
ωc2 − ωc1

ω0
, ω0 = 2π f0, (7b)

where f0 is the center frequency of the passband and ωc1

and ωc2 are the lower and upper angular equi-ripple cut-off
frequencies of the passband, respectively.

The network shown in Fig. 1(c) represents a bandpass filter
with the so called in-line coupling topology, as illustrated in
Fig. 2. In this figure, white circles represent the resonators of
the structure ru, while dashed circles represent the terminal
ports with reference impedances RP1 = 1/GP1 , RP2 =
1/GP2 . Also, solid lines connecting the circles represent the
ideal admittance inverters of the network JP11, Ju,u+1, JNP2

.
If Kirchhoff’s current law is applied to the nodes of the

bandpass network shown in Fig. 1(c), the following linear
system of equations is obtained
IP1

0
0
0
0

 =


GP1 jJP11 0 0 0

jJP11 Y
(1)
p jJ12 0 0

0 jJ12 Y
(2)
p jJ23 0

0 0 jJ23 Y
(3)
p jJ3P2

0 0 0 jJ3P2 GP2

·

VP1

V1
V2
V3
VP2


(8)

where Y (u)
p is the admittance of the resonators, calculated as

Y (u)
p = j ω Cp +

1

j ω Lp
+ j Bu. (9)

Similarly as before, it is now convenient to express the matrix
of the system as the sum of three matrices as

I =
[
G+ Yinv + Yp

]
· V . (10)

The first matrix is again the conductance matrix defined in (4).
The second matrix is symmetric and contains the values of the

admittance inverters of the network

Yinv = j


0 JP11 0 0 0

JP11 0 J12 0 0
0 J12 0 J23 0
0 0 J23 0 J3P2

0 0 0 J3P2
0

 . (11)

Finally, the third matrix represents the admittances of the
resonators

Yp =


0 0 0 0 0

0 Y
(1)
p 0 0 0

0 0 Y
(2)
p 0 0

0 0 0 Y
(3)
p 0

0 0 0 0 0

 . (12)

Note that the size of all these matrices is the same as that
of the regular coupling matrix with ports, namely (N + 2)×
(N+2). Also, we want to remark that the admittance inverters
are located in the off diagonal elements of (11), and that the
information of the resonators appears in the diagonal entries
of (12). We stress that all matrices involved in the formulation
are symmetric, therefore assuring that the considered network
is completely reciprocal.

III. NETWORK WITH TIME MODULATED RESONATORS

Applying time-varying signals to modulate the capacitors
of the bandpass network shown in Fig. 1 makes the system
nonlinear [27], [28]. In this work, we will consider that
the values of the capacitors are modulated in time with the
following sinusoidal variation

C(u)
p (t) = Cp

[
1 + ∆m cos(ωm t+ ϕu)

]
, (13)

where ωm is the angular frequency of the modulating signal,
ϕu is the initial phase, and ∆m is the modulation index. Even
though we will use the same modulation frequency and mod-
ulation index to modulate all capacitors, their initial phases
may be different along the network, i.e., ϕu = (u − 1) ∆ϕ

with u = 1, 2, · · · , N . It will be shown later in this paper
that this phase difference is the key mechanism that enables
non-reciprocal responses.

In this scenario, a number of nonlinear harmonics Nhar are
generated in each resonator, resulting into the equivalent net-
work shown in Fig. 3. These nonlinear harmonics are coupled
by the time modulated capacitors. For simplicity, the figure
only shows Nhar = 3 harmonics (i.e., k = · · · ,−1, 0, 1, · · ·
with k denoting the order of a given nonlinear harmonic).

The application of Kirchhoff’s current law on the network
shown in Fig. 3 leads to a linear system with a structure very
similar to the one given in (10). However, each entry in the
matrix system becomes now a submatrix of size Nhar×Nhar

due to the generated nonlinear harmonics. In this way, the
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Fig. 3. Equivalent circuit of the ideal filter shown in Fig. 1(c) when a time
domain signal is used to modulate the value of the capacitors. Color boxes
represent the admittance coupling matrix between generated harmonics.

vector containing the nodal voltages becomes

V =


VP1

V1
V2
V3
VP2

 , VP1
=


VP1,−2

VP1,−1

VP1,0

VP1,+1

VP1,+2

 , (14a)

Vu =


Vu,−2

Vu,−1

Vu,0
Vu,+1

Vu,+2

 , VP2
=


VP2,−2

VP2,−1

VP2,0

VP2,+1

VP2,+2

 , (14b)

where the number of harmonics considered is five (Nhar = 5,
k = · · · ,−2,−1, 0, 1, 2, · · · ) and the total number of un-
knowns in the system of linear equations becomes (N +
2)Nhar. We recall that in our notation u is an integer sweep-
ing the physical resonators (u = 1, 2, · · ·N ). Therefore Vu
of (14b) are simply the 2 to N+1 entries of V shown in (14a).
Then, following the same strategy as before, the conductance
matrix is written as

G =


GP1

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 GP2

 , (15)

where 0 denotes the zero matrix. The other sub-matrices
are diagonal and represent the loads to the new generated
harmonics as GP1

= GP1
U and GP2

= GP2
U , with U being

the identity matrix. In addition, the matrix of the admittance
inverters can now be written as

Yinv = j



0 JP11 0 0 0

JP11 0 J12 0 0

0 J12 0 J23 0

0 0 J23 0 J3P2

0 0 0 J3P2
0

 , (16)

where the submatrices Ju,u+1 = Ju,u+1 U are also diagonal
and represent the couplings of same order harmonics between
the different resonators. Here we should remark that with
the equivalent network employed, which uses ideal frequency

independent inverters, the couplings of same order harmonics
between different resonators are all identically affected by
the original inverters. This is a narrowband approximation
usually introduced in the theory of coupling matrices [26].
In real implementations, harmonics will be affected by the
inverters in a slightly different way due to their intrinsic
dispersive nature. These dispersive effects maybe important
for wideband responses and special techniques may be needed
to preserve accuracy [29], [30]. However, for narrowband
responses (fractional bandwidths typically less than 15%), the
narrowband approximation usually gives good results [26].

Finally, the matrix that contains the resonator admittances
becomes

Yp =



0 0 0 0 0

0 Y
(1)
p 0 0 0

0 0 Y
(2)
p 0 0

0 0 0 Y
(3)
p 0

0 0 0 0 0

 . (17)

Each admittance submatrix represents the coupling among the
different nonlinear harmonics generated in a resonator with a
time-modulated capacitor.

Applying the theory reported in [31], [32], which assumes
ideal capacitors, permits to express each of these submatrices
as

Y (u)
p = Yb + j ωnN

(u)
c + j Bu U, (18)

where ωn is a diagonal matrix containing the angular frequen-
cies of the nonlinear harmonics (spectral matrix), namely

ωn =


ω − 2ωm 0 0 0 0

0 ω − ωm 0 0 0
0 0 ω 0 0
0 0 0 ω + ωm 0
0 0 0 0 ω + 2ωm

 .

(19)
The matrix Yb includes the presence of the inductors in the
modulated resonators and can be expressed as

Yb =
1

j Lp
ωn

−1. (20)

Finally, N (u)
c models how the nonlinear harmonics are excited

due to the modulated capacitors and it can be written as

N (u)
c =


Cp D(u) 0 0 0
E(u) Cp D(u) 0 0

0 E(u) Cp D(u) 0
0 0 E(u) Cp D(u)

0 0 0 E(u) Cp

 . (21)

The new elements of this matrix depend on the modulation
index and on the phases of the modulating signal as

D(u) =
∆m Cp

2
e−j ϕu , E(u) =

∆m Cp

2
e+j ϕu . (22)

By doing straightforward operations with these matrices, the
final admittance submatrix in (18) can be written as shown
in (23) (top of the next page). In this last expression, we have
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Y
(u)
p =


Y

(−2)
r + jBu jD(u) (ω − 2ωm) 0 0 0

jE(u) (ω − ωm) Y
(−1)
r + jBu jD(u) (ω − ωm) 0 0

0 jE(u) ω Y
(0)
r + jBu jD(u) ω 0

0 0 jE(u) (ω + ωm) Y
(+1)
r + jBu jD(u) (ω + ωm)

0 0 0 jE(u) (ω + 2ωm) Y
(+2)
r + jBu

 (23)

employed the following auxiliary admittance

Y (k)
r = j Cp

(
ω + k ωm

)
+

1

j Lp

(
ω + k ωm

) . (24)

The form of the matrix shown in (23) admits an interesting
interpretation of the nonlinear phenomenon in terms of cou-
pled network resonators. Following the coupling matrix for-
malism, the elements in the diagonal represent new resonators
due to the generated nonlinear harmonics that we denote as
harmonic resonators. Therefore, each physically modulated
resonator gives rise to Nhar new harmonic resonators yielding
to a network of order NharN . These resonators have different
resonant frequencies, transforming the original structure into
an asynchronously tuned coupled resonators network.

The resonant frequencies of the new harmonic resonators
can be obtained by equating the diagonal elements of the
matrix shown in (23) to zero. However, following the coupling
matrix formalism, it would be convenient to formulate all
resonators to be equal and employ additional frequency in-
variant susceptances to account for differences in the resonant
frequencies. This can be accomplished by first writing (24) as

Y (k)
r = j ω Cp + j Cp k ωm +

1

j ω Lp

(
1 + k ωm/ω

) , (25)

and then applying the following Taylor expansion

1

1 + x
≈ 1− x+ · · · , x < 1 (26)

to the third term to obtain

Y (k)
r ≈ j ω Cp +

1

j ω Lp
+ j

(
Cp k ωm +

k ωm

ω2 Lp

)
. (27)

Note that this Taylor expansion can be used in this context
since, in general, we assume that the modulation frequency is
significantly smaller than the operation frequency, i.e., ωm <<
ω [24].

The comparison of this expression with (9) shows that
the harmonic resonators can be made all equal to the static
resonators in the unmodulated network. The differences in
resonant frequencies can be modeled with additional frequency
invariant susceptances, defined as

B̂k = Cp k ωm +
k ωm

ω2
0 Lp

, (28)

where, in order to make the frequency invariant susceptances
truly independent on frequency, the center frequency of the
passband ω0 has been used in the last definition. The ap-
proximation will remain valid for narrowband filters. These

frequency invariant susceptances can also be formulated in
terms of the initial lowpass capacitors as

B̂k =
2 k ωm C

ω0 FB
. (29)

It can be observed that the frequency invariant susceptances
associated to harmonic resonators depend on the order of the
nonlinear harmonic itself k, on the modulation frequency ωm

and on the passband bandwidth. This expression is also very
useful, since it will directly translate into the diagonal elements
of the coupling matrix for the non-reciprocal filter by setting
the lowpass capacitor to unity, i.e., C = 1 F.

It is illustrative to compare the structure of the matrices
shown in (8) and in (23). Specifically, the off diagonal el-
ements of the matrix (23) indicate that the new harmonic
resonators are coupled following an in-line coupling topology
among them. However, it can be observed that the matrix is not
symmetric. This indicates that these harmonic resonators are
coupled through non-reciprocal admittance inverters. Follow-
ing this idea, we define a non-reciprocal admittance inverter to
represent the coupling between two different harmonics k− 1
and k, belonging to a specific physical resonator u, as{

J
(k,k−1)
u = D(u)

[
ω + k ωm

]
, Low to up.

J
(k−1,k)
u = E(u)

[
ω + (k − 1)ωm

]
, Up to low.

(30)

so a coupling from a lower order harmonic to an upper order
harmonic will use the top formula of (30), while a coupling
from an upper order harmonic to a lower order harmonic will
involve the bottom formula. An explicit expression for this
non-reciprocal inverter can be obtained in the lowpass domain
as

J
(k,k−1)
u =

∆m

2

C

ω0 FB
e−jϕu

[
ω0 + k ωm

]
J
(k−1,k)
u =

∆m

2

C

ω0 FB
e+jϕu

[
ω0 + (k − 1)ωm

] (31)

where the center angular frequency of the passband has been
used to define frequency invariant inverters.

We remark that these admittance inverters are different
from those shown in (16). Admittance inverters in (16) come
from the unmodulated network, and they couple same order
harmonics between different physical resonators. On the con-
trary, these new admittance inverters play an important role in
the nonlinear process occurring within each time modulated
resonator. As a consequence, the new admittance inverters
in (31) model the couplings between the different harmonics,
generated, due to the nonlinear process, within the same
physical resonator.

These last expressions indicate that the coupling between
adjacent harmonic resonators belonging to a specific physical
modulated capacitor can be controlled with the modulation
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Fig. 4. Coupling topology of the in-line filter shown in Fig. 1(c) when the
capacitors of the resonators are modulated with a time varying signal.

frequency ωm, modulation index ∆m, and initial phase of the
modulation signal ϕu. Moreover, the degree of non-reciprocity
of the coupling depends on both, the initial phase of the modu-
lating signal and the modulation frequency. These expressions
represent the values along the off-diagonal elements of the
coupling matrix for the final non-reciprocal filter, once the
value of the lowpass capacitor is set to unity (C = 1).

The analysis presented above permits an insightful interpre-
tation of non-reciprocal filters in terms of an asynchronously
tuned coupled resonators network. As already indicated, the
order of the equivalent network is N Nhar. Its coupling
topology is further shown in Fig. 4. In this figure, harmonic
resonators are identified with white circles as r

(k)
u . These

harmonic resonators are defined with the same inductors Lp,
capacitors Cp and frequency invariant susceptances Bu as the
original static resonators. However, the new frequency invari-
ant susceptances B̂k given in (29) must be added to correctly
represent their resonant frequencies. Furthermore, solid lines
represent regular inverters modeling the couplings of same
order harmonics between different physical resonators, as de-
fined in (6). Finally, lines terminated in arrows represent non-
reciprocal inverters modeling the couplings between different
order harmonic resonators belonging to the same physical
resonator, as defined in (30) or (31). It is also interesting
to note that this coupled resonator network can easily be
characterized with the traditional coupling matrix formalism
[26], using the results obtained in this Section. In this case the
size of the coupling matrix is (N + 2)Nhar × (N + 2)Nhar.

It is interesting to note that according to the admittance
inverters expressed in (31), the coupling strength increases
with the order of the harmonics. This implies that the coupling
towards higher order harmonics would be very strong, which is
a somewhat counter-intuitive scenario. The situation, however,
can be better understood with the coupling topology shown
in Fig. 4. This topology explicitly states that coupling can
only occur between contiguous harmonics, thus avoiding direct
power coupling towards high-order harmonics.

Furthermore, the topology shown in Fig. 4 explicitly shows
that the non-reciprocal response in time-modulated filters
originates due to the non-reciprocal coupling [see (31)] be-

(a) (b)

(c) (d)

Fig. 5. Different paths that can be followed by electromagnetic waves to
travel from port 1 to port 2 (top row) and from port 2 to port 1 (bottom row)
in the coupling topology described in Fig. 4.

tween adjacent nonlinear harmonics that appear in time-
modulated resonators. Following this scheme, the underlying
non-reciprocal mechanism can be intuitively understood as
follows. Electromagnetic waves propagating from port 1 can
reach port 2 and keep the same oscillation frequency by (i)
going through the admittance inverters that link the different
resonators at the fundamental frequency, as in regular in-line
filters (see Fig. 2 and Fig. 5a); and (ii) going through an
ideally infinite number of routes (assuming an infinite number
of nonlinear harmonics) that appear in the topology due to
the presence of harmonic resonators. One specific example
of these routes, illustrated in Fig. 5b, involves the harmonic
admittance inverters J (−1,0)

1 , J (−2,−1)
2 , J (−1,−2)

3 , and J (0,−1)
3

that impart a total phase of +ϕ1 + ϕ2 − 2ϕ3 to the waves
propagating therein. The output at port 2 is then conformed
by the interference of the waves coming from all possible
routes. Let us now consider the dual case, i.e., waves coming
from port 2 and propagating towards port 1. As in our previous
analysis, propagating waves can follow the path of common
in-line filters (see Fig. 5c) plus potentially any of the ideally
infinite routes enabled by harmonic resonators. The former
leads to reciprocal contributions whereas any of the paths that
encompasses nonlinear harmonics introduces non-reciprocity
due to the non-reciprocal response of the impedance inverters.
For instance, Fig. 5d shows the route previously analyzed
but considering now the opposite propagation direction of
the waves. This specific path involves the same harmonic
impedance inverters as before, but traversed in the opposite
direction, thus providing a total phase of −ϕ1 − ϕ2 + 2ϕ3

to the waves (negative with respect to the previous scenario).
For instance, assuming ∆ϕ = 45◦, the total phase difference
between forward and backward paths in this example is
of 90◦. It is thus evident that an adequate control of the
phase imparted by each time-modulated resonator is key to
control the response of this type of filters. At port 1, waves
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coming from all routes interfere to construct the output signal.
Strong non-reciprocity at the same frequency arises due to the
different wave interference that appears in ports 1 and 2.

The design of time-modulated non-reciprocal filters can be
carried out following the guidelines described in [24]. In such
design, the goal is to optimize the modulation frequency and
index as well as the initial phase of the modulation signal
applied to each resonator to (i) independently manipulate
the interference of all waves that merge at ports 1 and 2
to boost non-reciprocity; (ii) maximize the energy coupled
to nonlinear harmonics; and (iii) ensure that most energy
is transferred back to the operation frequency at the device
ports to minimize loss. It is important to remark that it is
required to modulate at least two physical resonators to enable
non-reciprocal responses [24]. If one modulates just a single
resonator, the incoming energy will simply be distributed
among various nonlinear harmonics that will then propagate
through the network. Finally, note that we have focused here
on non-reciprocal responses at the same frequency. It is indeed
possible to design devices based on time-modulated resonators
that exhibit non-reciprocal responses between the fundamental
frequency and any desired nonlinear harmonic. These devices
will be governed by the topology shown in Fig. 4 and will
follow the theory developed above.

IV. NUMERICAL RESULTS

Using the coupling matrix formalism derived above, a
software tool for the analysis of non-reciprocal in-line filters
has been developed. In this Section, we will investigate the
convergence of the numerical algorithm as a function of the
number of harmonics Nhar included in the calculations.

The first example is a filter of order three whose unmodu-
lated response has equal ripple return losses of RL = 13 dB.
The filter coupling matrix yields

M3 =


0 0.8894 0 0 0

0.8894 0 0.8294 0 0
0 0.8294 0 0.8294 0
0 0 0.8294 0 0.8894
0 0 0 0.8894 0

 .

(32)
This coupling matrix gives the response of the normalized
lowpass prototype.

The bandpass response is adjusted to have a bandwidth of
47 MHz, with a center frequency of f0 = 975 MHz (FB =
4.8%). The modulation parameters were optimized, leading to
the following values: fm = 22.8 MHz, ∆m = 0.050, and
∆ϕ = 35◦.

Here we should remark that the design of this filter is not
yet completely determined by synthesis techniques. Rather,
the coupling matrix shown in (32) gives the initial response
of the unmodulated filter. Once this response is established, the
parameters of the modulation signals are optimized to obtain
the desired non-reciprocal response [24].

In general, the design of this filter fully from synthesis
techniques would involve (i) the calculation of suitable reflec-
tion and transmission polynomials to properly represent the
desired (non-reciprocal) transfer functions, (ii) the extraction

0.9 1 1.1

Frequency (GHz)

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 o

f 
S

1
1
 (

d
B

)

N
har

=3

N
har

=5

N
har

=7

(a)

0.9 1 1.1

Frequency (GHz)

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 o

f 
S

2
2
 (

d
B

)

N
har

=3

N
har

=5

N
har

=7

(b)

0.9 1 1.1

Frequency (GHz)

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 o

f 
S

2
1
 (

d
B

) N
har

=3

N
har

=5

N
har

=7

(c)

0.9 1 1.1

Frequency (GHz)

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 o

f 
S

1
2
 (

d
B

)

N
har

=3

N
har

=5

N
har

=7

(d)

Fig. 6. Scattering parameters of the third order non-reciprocal filter designed
in Section IV. Results are computed with the coupling matrix approach
introduced in this work using an increasing number of harmonics in the
numerical method.

from these polynomials of a suitable coupling matrix and (iii)
the transformation of the obtained coupling matrix into a form
that represents the coupling topology shown in Fig. 4.

Fig. 6 shows the scattering parameters at the fundamental
frequency, obtained for this filter with increasing number of
harmonics Nhar = 3, 5, 7. Numerical results were obtained
from the responses of the coupling matrices for the time mod-
ulated network. Such matrices are easily calculated starting
with the coupling matrix given in (32) for the unmodulated
network, and then considering the selected parameters for the
modulation signal (fm, ∆m and ∆ϕ). Next, using the coupling
topology shown in Fig. 4, the coupling matrix entries for the
time modulated network are computed with (29) and (31), with
C = 1.

It can be observed that the results are in general very stable,
showing only small differences as the number of harmonics
is increased. Note that the algorithm converges using just
Nhar = 5 harmonics and increasing further the number
of harmonics leads to negligible changes in the simulated
response. Results show that the filter has a passband which is
quite flat in the forward direction with a bandwidth of 48 MHz
measured at the return loss level of 11 dB. It should be stressed
that, even though the network is non-reciprocal it is symmetric
and thus return losses from both ports are identical. Insertion
losses within the passband in the forward direction are 2.5 dB.
Since the network is lossless, these losses are in fact due to
power that is converted to nonlinear harmonics and is not
converted back to the fundamental frequency. In order to avoid
such losses while preserving the integrity of wideband signals,
i.e., preventing that nonlinear harmonics could interfere with
signals propagating through the filter bandpass, it would be
ideal to eliminate all higher order nonlinear harmonics at the
ports. The resulting device would be a pseudo-linear time-
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invariant filter in which nonlinear harmonics appear and propa-
gate within the circuit but are completely cancelled at the ports.
Such configuration has recently been put forward in the case of
circulators composed of three ports [12]. The time-modulated
filters proposed here are composed of only two ports, which
decreases the degrees of freedom to construct pseudo-linear
time-invariant devices. Specifically, in the forward direction,
it is indeed desirable to completely eliminate higher order
nonlinear harmonics at both ports, which in turn decreases the
losses associated to the device. The situation is different when
the port 2 is excited (backward direction). Since the proposed
filter is a two port device, the power that is neither reflected
nor transmitted must be transferred to higher order harmonics
at the ports. Therefore, the goal would be to cancel out higher
order harmonics at Port 1 while at the same time maximizing
the power reflected back to high order harmonics at Port 2, thus
achieving maximum isolation. We have observed that with the
in-line topology studied in this paper, a complete cancellation
of undesired higher order harmonics at the ports does not seem
to be possible. We have verified that the power levels coupled
to the strongest undesired higher order harmonics at the
opposite ports are always below -9 dB. Further improvements
might be possible by investigating differential arrangements
similar to those described in [12].

In any case, Fig. 6 confirms that very strong non-reciprocity
is obtained at the center of the passband, being the insertion
loss of about 17 dB. Overall, the insertion losses in the
backward direction are greater that 8 dB within the whole
useful bandwidth. It should be noted that even though large
isolation can be obtained at the center of the passband, it
deteriorates at the edges of the useful bandwidth. As detailed
in the previous section, non-reciprocity is obtained by pro-
voking energy conversion from the fundamental frequency to
nonlinear harmonics. Although these conversion effects are
non-reciprocal in magnitude and phase, the main mechanism
that allows to obtain high non-reciprocity is the difference in
phase between the forward and backward paths. Therefore,
high isolation is obtained by adjusting the phases among
the resonators to produce phase cancellation effects in the
backward direction. With a small number of resonators (three
in this example), these cancellation effects can be made
efficient only over a narrow bandwidth. Moreover, as it will
be discussed in our next example, there is a trade-off between
the isolation level and the bandwidth where this isolation is
achieved.

If we define the directivity between the forward and back-
ward directions as

D =
|S21|2

|S12|2
, (33)

then a directivity of D0 = 14.5 dB is obtained at center
frequency. Moreover, the directivity within the useful passband
is always better than D = 5.5 dB.

To demonstrate the convergence of the algorithm when the
order of the network is increased, we have also designed a
fourth order non-reciprocal filter. For this second example the
return losses of the unmodulated filter are RL = 18.5 dB,
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Fig. 7. Scattering parameters of the forth order non-reciprocal filter designed
in Section IV. Results are computed with the coupling matrix approach
introduced in this work using an increasing number of harmonics in the
numerical method.

leading to the following coupling matrix

M4 =


0 0.997 0 0 0 0

0.997 0 0.873 0 0 0
0 0.873 0 0.68 0 0
0 0 0.68 0 0.873 0
0 0 0 0.873 0 0.997
0 0 0 0 0.997 0

 .

(34)
This time the bandpass response is adjusted to have a band-
width of 58 MHz at a center frequency f0 = 890 MHz, given
a fractional bandwidth of FB = 6.5%. After optimization, the
parameters of the modulated capacitors are fm = 19 MHz,
∆m = 0.076, and ∆ϕ = 48◦.

Fig. 7 shows the simulated scattering parameters with
increasing number of nonlinear harmonics Nhar = 3, 7, 9.
It is evident that the response is inaccurate if only three
harmonics are included in the calculations. After increasing
further the number of harmonics, the differences among the
different simulations reduce considerably, especially for the
reflection characteristic and the forward transmission coeffi-
cient. We have verified that including additional harmonics in
the simulations leads to negligible variations in the simulated
response, which indicates that good convergence is obtained
with nine harmonics. As expected, this study shows that more
harmonics needs to be used in the numerical simulations when
the order of the network increases.

Moreover, it has been previously shown [16], that in this
type of modulated resonators only the two first higher order
harmonics are important in the nonlinear process. Conse-
quently, the minimum number of harmonics that need to be
considered in the numerical simulations should grow, with the
number of resonators in the network, according to the rule:
Nhar = 2 (N − 1) + 1. Note that the convergence results
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presented for the third and fourth order filters, shown in Fig. 6
and Fig. 7, are in agreement with this rule.

The filter shows an almost flat response for the transmission
coefficient in the forward direction, having a bandwidth of
40 MHz measured at a return loss of RL = 12 dB. The
insertion losses in the forward direction are smaller than
IL = 3.3 dB within the useful passband. Again, these
losses correspond to power converted from the fundamental
frequency into nonlinear harmonics that is not converted
back into the fundamental frequency. The response of the
filter shows a strong non-reciprocal behavior in the backward
direction. Around the center frequency, the directivity is better
than D0 = 13.7 dB in a bandwidth of 26 MHz. In the whole
useful passband, the directivity is shown to be better than
D = 9 dB.

At this point it is interesting to observe that the optimum
modulation frequency (fm = 19 MHz) is slightly smaller
than the bandwidth of the filter. This condition assures that
the two first intermodulation products can be strongly excited,
while the generation of higher order intermodulation products
are minimized. Also, we emphasize that the response of the
filter was optimized to achieve a good trade-off between the
isolation level, and the bandwidth where it is achieved. Other
optimization criteria are possible, for instance by increasing
further the isolation level, at the expense of reducing the
bandwidth where this isolation is achieved. For instance we
have verified that by decreasing the frequency of the mod-
ulation signal to fm = 18 MHz, the directivity increases
to D0 = 33.1 dB, although in a narrow bandwidth of only
8.6 MHz. In any case, this example shows that the proposed
system offers high flexibility in the characteristics that can be
achieved, that could be adapted to many different scenarios.

As validation of the theory presented in this paper, we
employ this last filter design to compare our results with
those obtained with the commercial tool ADS [33]. Here
we remark that the ADS results were obtained using ideal
built-in models to implement the time modulated capacitors
through (13), combined with the large signal scattering pa-
rameters analysis module. In addition, we also check what
is the impact of the approximations introduced in order to
formulate the frequency independent elements required by the
coupling matrix formalism. Essentially, the approximations
involve (i) the representation of the harmonic resonators with
the frequency invariant susceptances of (29), instead of using
the rigorous admittances given in (24); and (ii) the use of
frequency independent admittance inverters of (31), instead of
the rigorous expressions shown in (30). Fig. 8 compares the
filter response using these two different approaches, and using
the commercial tool ADS. It can be observed that our theory
(solid lines, denoted as ‘Rigorous’) agrees perfectly with the
results obtained with ADS (markers). Small differences can
be observed between these two results (ADS, Rigorous), and
the results obtained introducing the approximations (dashed
lines, denoted as ‘CM’). This indicates that the impact of
the approximations introduced is indeed small, especially for
narrowband filters.
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Fig. 8. Scattering parameters of the fourth order non-reciprocal filter designed
in Section IV computed using the commercial tool ADS (cross symbols), the
coupling matrix approach introduced in this work with approximations (CM;
dashed line) and without approximations (solid lines). Approximations involve
the use of (27)-(29) and (31). In both calculations the number of harmonics
has been fixed to Nhar = 9.

TABLE I
DIMENSIONS (IN MILLIMETERS) OF THE FABRICATED 3RD-ORDER FILTER

(SEE FIG. 9).

W1 W2 W3 S1 S2 S3 h1 l1 l2

50 3.44 3 2.66 0.36 0.22 11.3 153 72

l3 l4 l5 l6 l7 l8 l9 Φ1 Φ2

31.3 69 100 17 31.95 15.5 20.4 1.8 1

V. PRACTICAL REALIZATION

In this Section we present the fabrication and measure-
ment of the two previously designed non-reciprocal filters,
implemented in microstrip technology. Fig. 9 and Fig. 10
show the details of the filters together with pictures of the
manufactured prototypes. It can be observed that the top
metallization layer contains the input/output RF feeding lines
and that the resonators are realized using quarter wavelength
transmission lines terminated on one side with a via-hole
connected to a varactor. On the bottom metallization layer
the ground plane of the microstrip line is modified to feed the
various varactors (from Skyworks, model SMV1234) with the
corresponding modulating signals using coplanar waveguides.
In the figures we also show the positions where the varactors
are soldered in the board. Note that a choke lumped inductor
of value 180 nH is incorporated to increase the isolation
between the signals oscillating at f0 and fm. It should be
emphasized that this implementation enforces that the RF and
modulating signals are supported on different planes of the
substrates which significantly increases the isolation between
them (> 30 dB). The substrate material used for the fabrication
is Rogers RT/duroid 6035 HTC with a relative dielectric
constant εr = 3.5 and a thickness of 1.524 mm. The final
dimensions of the fabricated prototypes are collected in Table I
and Table II for the third and fourth order filters, respectively.

Fig. 11a shows the measured results for the third order
filter in the absence of any modulation and compares them
with the simulated response using the coupling matrix for-
malism. Here we should remark that the simulated responses
of the filters are all obtained with the theoretical analysis
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(a) (b)

(c) (d)

Fig. 9. Geometry of the third order filter designed in microstrip technology.
(a) Detail of the top metalization layer. (b) Detail of the bottom metalization
layer. Panels (c)-(d) show a picture of the top and bottom metalization layers
of the fabricated prototype, respectively.

TABLE II
DIMENSIONS (IN MILLIMETERS) OF THE FABRICATED 4TH-ORDER FILTER

(SEE FIG. 10).

W4 S4 S5 S6 h2 l10 l11 l12

70 4.56 2.21 0.21 9.3 160 73 27.8

l13 l14 l15 l16 l17 l18 l19 l20

70.3 98.1 23.4 22.5 14 17 25.5 26.9

presented in Section III. In addition, it can be observed in
the measured response some deviations with respect to the
response of the designed prototype shown in Fig. 6. The
differences are mainly due to the insertion losses within the
passband, which are around IL = 2.8 dB, and to some
parasitic cross couplings that were not taken into account
during the initial design. These two factors have been included
in the simulated responses obtained with the coupling matrix
formalism derived in this work, shown in Fig. 11. Losses in the
resonators are modeled with an additional resistor connected
in parallel. The response show in Fig. 11a is used to extract the
unloaded quality factors of the resonators, giving QU = 114.
This unloaded quality factor is small, but within the range
achievable in planar technology [34], and especially when
using microstrip line printed resonators. In addition, we have
found that the drop of selectivity in the lower side of the
passband is mainly due to a non negligible cross coupling
between the ports and the second resonator, giving normalized
coupling factors or MP12 = M2P2

= 0.26. Although of
much weaker value, there is also a small parasitic coupling
between the first and third resonator, which is modeled with a
normalized coupling factor of M13 = 0.09. It can be observed
that the agreement between measured and simulated results are
very good, once losses and parasitic couplings are included in
the derived coupling matrix formalism.

Fig. 11b presents the measured versus simulated results
when the modulating signal is applied to the varactors and the
filter is excited from the first port. It can be observed that the
filter behaves as in the unmodulated case, with increased losses
of around IL = 4.5 dB that account for both dissipation effects
and the power converted into nonlinear harmonics. The useful

(a) (b)

(c) (d)

Fig. 10. Geometry of the fourth order filter designed in microstrip technology.
(a) Detail of the top metalization layer. (b) Detail of the bottom metallization
layer. Panels (c)-(d) show a picture of the top and bottom metalization layers
of the fabricated prototype, respectively.

bandwidth measured at a return loss level of RL = 11 dB is
45 MHz. Fig. 11c shows the response of the prototype when
it is excited from the second port. The filtering response is
suppressed and instead the device behaves as an isolator that
attenuates all incoming power. Maximum non-reciprocity is
achieved at the center of the passband with a directivity of
D0 = 13.8 dB. It should be emphasized that when losses and
parasitic cross couplings are included in the coupling matrix
model, an excellent agreement is obtained between measured
data and numerical simulations.

Measurements corresponding to the fourth order filter are
shown in Fig. 12. Fig. 12a plots the response of the filter
before introducing the modulating signal and compares it
with respect to the response of the ideal circuit. Again the
bandwidth and the ripple level obtained within the passband
are very similar. Measured results exhibit a perfectly constant
equi-ripple response, since the resonant frequencies of the
resonators are slightly tuned with constant voltages applied
to the varactors. The insertion losses due to dissipation effects
in the resonators and in the varactors are slightly larger than in
the previous filter, obtaining a minimum level of IL = 3.2 dB
that slowly increases towards the end of the passband. The
insertion losses measured in the unmodulated case (Fig. 12a)
were used again to extract the unloaded quality factor of
the resonators, obtaining essentially the same value as in the
previous example. This is something to be expected, since the
same resonators as before were used in this second prototype,
and the same technology was used for manufacturing. In
any case, this also shows high repeatability of the employed
manufacturing process.

Measured results again show a small drop in selectivity as
compared to the designed response of Fig. 7, especially in
the lower side of the passband. Once more we found that
this is due to parasitic cross couplings not taken into account
during the initial design process. In the comparison shown in
Fig. 12, we can observe good agreement between measured
and simulated responses when losses and parasitic couplings
are included in the derived model. Again, we found that the
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Fig. 11. Measured response of the manufactured third order non-reciprocal filter and comparison with respect to the numerical results obtained with the
proposed technique. In our numerical simulations, losses and parasitic cross couplings have been included in the coupling matrix approach as described in
the text. (a) Unmodulated case related to the reciprocal response of the filter in which S11 = S22 and S12 = S21. (b)-(c) Response obtained when the
modulating signal is applied to the varactors and the filter is excited (shown in the inset using a magenta arrow) from the first (b) and the second (c) port.
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Fig. 12. Measured response of the manufactured fourth order non-reciprocal filter and comparison with respect to the numerical results obtained with the
proposed technique. In our numerical simulations, losses and parasitic cross couplings have been included in the coupling matrix approach as described in
the text. (a) Unmodulated case related to the reciprocal response of the filter in which S11 = S22 and S12 = S21. (b)-(c) Response obtained when the
modulating signal is applied to the varactors and the filter is excited (shown in the inset using a magenta arrow) from the first (b) and the second (c) port.

TABLE III
BASIC ELECTRICAL PERFORMANCES OBTAINED FOR THE TWO

MANUFACTURED FILTERS.

IL (dB) RL (dB) D (dB) FB (%)

Third order 4.5 11 13.8 4.6

Fourth order 4.4 11 13.6 6.4

strongest parasitic couplings occur between the ports and the
closest non contiguous resonators: MP12 = M3P2

= 0.23
and MP13 = M2P2

= 0.1. However, non negligible parasitic
couplings have also been found between internal resonators:
M13 = M24 = 0.12 and M14 = 0.06.

Fig. 12b presents the measured results obtained from the
manufactured prototype when the modulating signal is applied
to the varactors and the filter is excited from the first port.
The fabricated prototype behaves as a filter with a useful
bandwidth of 57 MHz measured at a return loss level of
RL = 11 dB. With respect to the unmodulated case, the
insertion losses in the forward direction have increased to
IL = 4.4 dB. As in the previous case, the extra losses
are due to power converted into nonlinear harmonics that is

not converted back to the fundamental frequency. Exciting
the device from the second port significantly attenuates the
propagating energy. The strong non-reciprocity predicted by
the initial simulations is confirmed by the measurements.
Around the center frequency of the passband, the directivity
is better than D0 = 13.6 dB in a bandwidth of 35 MHz.
Across the entire passband, the directivity is always better
than D = 7.2 dB. In general, very good agreement between
measured and simulated responses are obtained when losses
and parasitic couplings are included in the derived coupling
matrix model. For reference, the basic performances for both
manufactured filters are collected in Table III.

Another important characteristic of these devices for many
applications is the power handling levels [35]. Even though we
have not tested the proposed filters under high power signals,
other works [12] have shown that the nonlinear response of
varactors and their associated parasitic components are the
most critical factors that limit the power handling capabili-
ties of time-modulated circuits. The power handling of the
designed devices, then, will primarily depend on the type of
varactor used, and on the value of its breakdown voltage [12].
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VI. CONCLUSION

We have presented the analysis of non-reciprocal filters
based on time modulated capacitors using a coupling ma-
trix formalism. From the initial topology of the filter, a
novel coupling topology using harmonic resonators is first
derived. Closed form analytic expressions have been obtained
to represent the harmonic resonators with frequency invariant
susceptances, thus obtaining the diagonal elements of the
traditional coupling matrix. Also, non-reciprocal admittance
inverters have been analytically computed to account for the
couplings between harmonic resonators, thus obtaining the off-
diagonal elements of the coupling matrix. The derived analysis
method has been validated with the design and fabrication
of third and fourth order filters implemented in microstrip
technology. Measured results on the fabricated prototypes, and
results obtained with a commercial tool are found to agree well
with respect to numerical calculations obtained using the new
coupling matrix formulation, thus fully validating the theory
presented.
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