
EEC 134A/B Application Tutorial Note

On Board Signal Processing

Team: DiodeHard3

Vinay Vidyasagar

Embedded Signal Processing on the Teensy 3.6

Introduction

The development phase of the radar system involves not only the Analog Circuitry required for

the Baseband and RF boards but also processing the signal that is sent from the TX antenna. For

the signal processing portion of the radar I had attempted on to perform DSP operations on a

embedded system. When deciding which microcontroller to work with for this task, you have to

keep in mind the hardware specifications of the MCU. It’s recommended that one goes for

MCUs with more memory and faster clock rates but also with additional features such as ADCs,

SD Card slots and overall support for the MCU. Popular choices would be either Arduino based

MCUs or Raspberry Pi boards.

The microcontroller of choice was a Teensy 3.6, by PJRC, which runs on the Arduino

environment just as the Teensy 3.2 that was used to produce the Triangle wave input on our

Baseband PCB. The reason why we chose to proceed with the Teensy 3.6 was of it hardware

properties as well as the availability of libraries that would help us to sample the data that was

required.

Attached here in Fig 1 is the pin layout of the Teensy 3.6

1 Fig . 1 – Teensy 3.6 Pin Layout

The Teensy 3.6 has 12 bit ADCs which met our specification of having an ADC of higher

resolution. The higher resolution would allow us to be precise in our data conversion and in our

1 https://www.pjrc.com/teensy/pinout.html

overall result. Further, the built in SD card allowed us to store data of size that was more than the

Flash memory size of (1MB). Therefore, due to the hardware features available on this MCU we

decided to use it in our radar design.

Flowchart of Embedded DSP.

The goal for the Embedded Signal Processing aspect of the radar design was to understand

completely how the system level integration would work and to do that one should need a

module level understanding of the different steps to achieve the task. It is recommended to make

a flowchart of the steps

Attached below, Fig 2, is an initial flowchart that describes at a high level of how one can go

about the embedded DSP portion of the radar system design.

 Fig 2. Flowchart of Embedded DSP

For our setup we used two MCUs as using only one MCU for the transmitting and receiving

would result in the loss of crucial data that would give us in an inaccurate distance as would have

to stop transmitting and start sampling. To solve this issue, we used the Teensy 3.2 to transmit

and the 3.6 to process the received signal.

Sampling Data from the ADCs and storing the data.

When attaching any form of voltage to the GPIO pins on the Teensy 3.6 please make sure

that the voltage does not exceed 3.3V as suggested by the specifications on PJRC’s website. In

order to sample the data using the Teensy 3.6 the ADCs have to be used as the incoming data (IF

signal) is analog in nature and must be converted to a digital format so that the MCU can process

it. In our test case we attached a signal to Pin 16 or Pin A2 of the Teensy 3.6. To perform the

sampling of data and storing it on an SD card the following header files must be included in your

code, these are ADC.h and SD.h. The ADC header files allows access to the “adc” object that is

used to initiate data sampling and setting sampling properties such as speed and conversion; on

the other hand, the SD.h header file allows one to write or read from an SD card which was used

extensively throughout our procedure.

Attached here, Fig 3, is a sample code snippet that describe the sampling process using

the ADC and writing data to a text file on board the ADC.

 Fig 3 – Initialization of parameters

In this code snippet the ADC object was called through “new ADC()” and associated to a

variable along with the necessary variable for a file based operation. In our case we associated

every important variable to a file of the same name as that variable. For example, the sync signal

coming from the read by the Teensy 3.6 at Pin 27 was stored in a file called “sync.txt”. Similarly,

the sampled data from the ADC was stored in “data.txt”. To initialize properties of the ADC

functions native to the ADC library such as setConversionSpeed, setResolution and

setSamplingSpeed have to be used. The setConversionSpeed and setSamplingSpeed functions

control the speed of data conversion and sampling , which has three modes: low, medium, high

and very high, it’s best to use very high if you want to work with more data points. The

setResolution function sets the resolution property of the ADC and in our case it was set to 12,

the ADC’s output bit limit, in order to get the best resolution of our final output value.

To initialize the SD card you have to use the function in the SD.h header file called

SD.begin(). The function takes in a parameter that corresponds to the SD card location on the

MCU. For the Teensy 3.6 the SD Card is built in and to initialize it you would need to assign

“BUILTIN_SDCARD” to a variable; for our purpose we assigned “BUILTIN_SDCARD” to a

variable called chipSelect that was passed in as an argument to the SD.begin function. Once the

SD card was initialized we used functions such as SD.open and SD.remove to create or remove

files on the SD card ,both functions require the file name as a parameter.

After these settings are initiated the sampling and storing operations can be performed. Attached

below is a code snippet, Fig 4, that allowed us to sample and store the data on an SD card.

 Fig 4 – Sampling and Storing data

The sync signal from the Teensy 3.2 was connected at Pin 27 of the 3.6 as this data is required

for the processing aspect of the embedded DSP task. A function within the ADC library called

analogReadContinuous performs the reads data from the ADC. The input that this takes is the

pin, in our case A2, of the ADC where the IF signal is attached to. Once that was done, we read

(digitalRead) the data at Pin 27 this where the Sync signal was attached and stored it in the SD

card under the file “sync.txt”. Similarly, the ADC value was read and placed into the file on the

SD card called “data.txt”. Controlling these actions was a transmit flag that would stop sampling

when the condition failed. The condition was controlled using an external switch, when the

switch was turned on the sampling, reading and storing of data would take place. The use of a

sampling flag to indicate when to sample and perform other operations is necessary if you are

using two MCUs for the embedded DSP part.

Processing of Sampled Data

The last phase of the task requires processing in the form of FFTs and IFFTs of the sampled data

that was stored on the SD card. Originally, a Python script called “range_wav.py” was provided

to us during Quarter 1 but since we had to port it to the Arduino environment for the Teensy 3.6

we had to convert the Python code syntax to the syntax of C.

Attached below is a side by side comparison of a code snippet , Fig 5, of a section of the

“range_wav.py” along with the converted C syntax form. It can also be noted that there’s no

need to utilize the FFT function in the Audio library as the Python script already performs

Fourier Transform on the data set without calling any external math functions. The IFFT on the

other hand needs to be invoked and that depends upon the MCU of choice. If you’re working

with the Teensy MCU then ARM provides its own set of mathematical functions within its

library that may aid you in your development process.

 Fig 5 – Matrix operations on data read from SD card

The use of matrices to process the data meant that immense amount of data would need to be

operated on. Since we used a high sampling rate the storage for the number of samples exceeded

the 1MB flash memory limit on the Teensy 3.6. To tackle the memory shortage problem, we

used the SD card to act as main memory and this meant that every matrix operation done in C

would need to be done by treating the text files in the SD card as large matrices. Therefore, the

code was changed so that we could be able to read and write into a text files while treating them

as matrices. The shortage of memory on the Teensy is what makes the task of Embedded DSP

complex.

Attached below is a modified version of the code, Fig 6, that allowed us to work with text

files on board the SD card. The challenge that we encountered was working with File pointers

and file operations, this had to be done as there are certain parts that require data extraction of

matrix’s column, in our case a file’s column, which is not easily done in C as file operations read

data through rows rather than columns.

 Fig 6 – Corrected version of the processing section

Using the SD card’s memory as main memory in this case was the only solution that we thought

so that we can perform all actions necessary for signal processing on board the Teensy MCU.

Perhaps, there are other elegant solutions out there but this is what we found given the time limit.

Please make sure to tackle the memory issue from the beginning as that is the main issue when

working on the Embedded DSP part. An alternative solution could be to use a Raspberry Pi that

has 1GB of flash memory but requires an external ADC to convert the data.

Conclusion

When designing the Embedded DSP part of the radar design please make sure that you work on

areas you are strong with. Please keep in mind that this portion would involve both hardware as

well as software understanding to get a functional system. Utilize the benefit of libraries to

ensure that there is a modular approach to your design. Overall, this task will help you

understand the wonderful world of embedded systems and how to program them, not only would

this give you an exposure but also help you to think of solutions to your radar processing using

circuitry and software.

