Scott Richards
EEC 134 Team “TEAM”
#999135303

App Note: Signal Processing and Code Implementation

Introduction:

My main contribution to our design project was writing and implementing

the code used in our system’s signal generating and processing. In addition, I was

the group’s purchaser, and helped with testing.

Signal Generator:

For our system, we used the Teensy 3.1 micro-controller and the MCP4921

12-bit DAC microchip.

Digital Pins
digtalRead
digialvirite
pinMode

Touch
Touch
Touch
Touch

CS Touch

PWM

PWM
CS PWM
SCK

CS PWM

Analog Pins
analogRead
analogReference
analogReadRes

18 A4 SDAO

(117 A3 |SDAD

PWM Pins
analogWirite
analogWriteRes

L Vin (3.7 to 5.5 volts)
L 119 A5 SCLO

L1 20 A6

mhaid 21 A7 RX1

Touch Sense |
Pins
touchRead

Serial Ports

Seriall oo o~
Serial2
Seral3

Wire Library

SPI Port
SP Library

Touch
Touch
PWM
PWM
PWM
PWM

Figure 1 Teensy 3.1 Pin Layout

SCK

(316 A2 (SCLO

All digital pins have
Interrupt capability.

~
m
><
o
12C Port kg 5
o

5 so scx

Voo [M]® ~ [E]Vour | |
— - Regenr
cs 2] o |[ZVss

< Vg b ,
sckB] & [6]Veer

soi[4] = [Elipac v

Cp Amgp

it

o

n”._(]._n_

Eﬁm

Vour

Figure 2 MCP Pin Layout

Voo

Vss

The Teensy 3.1 is a micro-controller that we programmed using the Arduino IDE.
The Teensy’s output was then connected to our designated DAC, the MCP4921, in

order to produce our desired triangle wave output.

+2"""Wo =
Au
+5V —
T z HIuE
Teensy3.1 l_ l | _l_
- PO
w =
= of |+ « _ |McPag21
9’8 00
oD e :I & > (Ji) %)
SYNC
Figure 3 Teensy-MCP connection
| PACKARD OSCILLOSCOPE -

4 - A - tima ~
Figure 4 Triangle Wave output

To produce a triangle wave of the proper gain and period, I needed to modify the

MCP code given to us in lab 1.

O BHA

ICP_Code
clude <SPI.h> // Include the SPI library

d outputValue = 412;// A word is a 16-bit number
incr = 4;

st int slaveSelectPin = 10; //set the slave select (chip select) pin number
st int SYNC = 8; //set the SYNC output pin number

d setup()

// Set pins for output

pinMode(SYNC, OUTPUT); // SYNC pin

digitalWrite(SYNC, LOW); // Sync pulse low
pinMode(slaveSelectPin, OUTPUT); // Slave-select (SS) pin
SPI.begin(); // Activate the SPI bus

SPI.beginTransaction(SPISettings(800000, MSBFIRST, SPI_MODE@)); // Set up the SPI transaction; this is not very elegant as there is never a close transaction action.

d loop()

if (outputValue >= 3600 || outputValue <= 410){
incr = -incr;
digitalWrite(SYNC, !digitalRead(SYNC));

}

outputValue = outputValue + incr;

byte HighByte =highByte(outputValue); // Take the upper byte

HighByte = 0b@00@1111 & HighByte; // Shift in the four upper bits (12 bit total)
HighByte = 0b@0010000 | HighByte; // Keep the Gain at 1 and the Shutdown(active low) pin off
byte LonByte = lonByte(outputValue); // Shift in the 8 lower bits

digitalWrite(slaveSelectPin, LOW);

SPI.transfer(HighByte); // Send the upper byte
SPI.transfer(LowByte); // Send the lower byte
digitalWrite(slaveSelectPin, HIGH); // Turn off the SPI transmission

ure 5 Arduino Code

Here is a list of the changes | made:
1. Changed the starting value of outputValue to 412 (~0.5V) and the conditions
of the loop to contain outputValue within 3600 and 410 (0.5V -4.5V).
2. Changed the SPISettings value to 80000 Hz for a ~40ms period.
3. Changed the 4t bit of the HighByte variable from 0 to 1 for a 2V,., wave.

The resulting triangle wave was used as Vrune for our VCO for the proper frequency

range.

Signal Processing:

For processing the final signal from our LPF, we decided to use the MATLAB
code from lab 6.

// radar_range.m

SMIT IAP Radar Course 20112.5

%Resource: Build a Small Radar System Capable of Sensing Range,
Doppler,

%sand Synthetic Aperture Radar Imaging

0P of

Gregory L. Charvat
%Process Range vs. Time Intensity (RTI) plot

clear all;
close all;

% read the raw data .wav file here
% replace with your own .wav file
[Y,FS,NBITS] = wavread('yagi_and_coffee_can.wav');

%sconstants
c = 3E8; %(m/s) speed of light

%sradar parameters

Tp = 20E-3; %(s) pulse time

N = TpxFS; %# of samples per pulse

fstart = 2260E6; %(Hz) LFM start frequency

fstop = 2590E6; %(Hz) LFM stop frequency

BW = fstop-fstart; %(Hz) transmti bandwidth

f = linspace(fstart, fstop, N/2); %instantaneous transmit
frequency

%srange resolution
rr = c/(2xBW);
max_range = rr*N/2;

%the input appears to be inverted
trig = -1xY(:,1);

s = -1xY(:,2);

clear Y;

%sparse the data here by triggering off rising edge of sync pulse
count = 0;

thresh = 0;

start = (trig > thresh);

for ii = 100:(size(start,1)-N)
if start(ii) == 1 & mean(start(ii-11:ii-1)) ==
%start2(ii) = 1;
count = count + 1;
sif(count,:) = s(ii:ii+N-1);
time(count) = iix1/FS;
end
end
%scheck to see if triggering works
plot(trig,'.b');
hold on;si
plot(start2,'.r');
hold off;
grid on;

o o 0P o° o°

%ssubtract the average

ave = mean(sif,1);

for ii = 1:size(sif,1);
sif(ii,:) = sif(ii,:) - ave;

end

zpad = 8xN/2;

%SRTI plot
figure(10);

v = dbv(ifft(sif,zpad,2));
S =v(:,1:size(v,2)/2);
m = max(max(v));

imagesc(linspace(0,max_range,zpad),time,S-m, [-80, 0]);
colorbar;

ylabel('time (s)');

xlabel('range (m)');

title('RTI without clutter rejection');

%2 pulse cancelor RTI plot
figure(20);
sif2 = sif(2:size(sif,1),:)-sif(1l:size(sif,1)-1,:);
v = ifft(sif2,zpad,?2);
S=v;
R = linspace(@,max_range,zpad);
for ii = 1:size(S,1)
%S(ii,:) = S(ii,:).*xR.~(3/2); %0ptional: magnitude scale to
range
end
S = dbv(S(:,1:size(v,2)/2));
m = max(max(S));
imagesc(R,time,S-m, [-80, 0]);
colorbar;
ylabel('time (s)');
xlabel('range (m)');

title('RTI with 2-pulse cancelor clutter rejection');

Here’s a short function needed for the radar_range.m file.

// dbv.m

function out = dbv(in)

out = 20 * logl@(abs(in));

At first, [tried to use the python script, range.py, to generate our RTI graphs.
However, our results were quite lackluster, so I tried the MATLAB code and found
much better results. (We later found out the python code had some bugs that were
later fixed by Professor Leo.)

Conclusion:

The MCP was a very solid DAC, but it required a 2.5V Vi¢r. This does consume
additional power. I tried using the Teensy’s built in DAC, but we could not get a
proper signal.

After Professor Leo updated the python script, I tried it with a wave file taken
from our field test. The python script generated a black and white figure with
varying hues of gray to specify power. This was very difficult to see outside, but
produced somewhat similar results. We decided to use the MATLAB script in the

end.

