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Abstract 

During fall quarter, we built a 2.4GHz frequency modulated continuous wave (FMCW) 
radar system which can perform range and doppler using cantennas. During winter quarter, we 
built our own 2.4GHz radar system within a competitive atmosphere where every team tries to 
minimize power consumption, minimize overall weight, and maximize accuracy. 
 
Design Rules/Scoring: 

● Total budget of $300 
● Be able to detect 0.3x0.3 metal plate targets ranging from 5 meters to 50 metersm2  
● The radar may use any commercially available technology 
● Score is determined by total power consumption, total weight, and accuracy of measured 

distance 
 
Overall Design Details 

Basing our quarter one system, we designed our quarter two system to be better with the 
emphasis on simplicity and accuracy. We chose simplicity as our top priority to optimize our 
chances of getting the system to work. We then chose accuracy for our next priority since the 
score effect of power consumption and total weight is roughly negligible compared to how much 
the accuracy score can affect the final scoring. For our contingency plan, we kept our quarter one 
system intact and also attempted to improve on it. Keeping these things in mind, we looked 
online at various parts with their specifications and came up with the block diagram shown 
below. 
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Fig 1. Block Diagram 
 

In order to calculate the gain of the transmitting and receiving power, we used ADIsim to 
simulate the theoretical values. We obtained a theoretical transmitting power of 20.7 dBm and a 
theoretical receiving power of -90 dBm. The simulations for the transmitter and receiver are 
shown below. 
 

 

Fig 2. Transmitter Simulation 
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Fig 3. Receiver Simulation 
 

The table below shows the components and its model number that we selected for the 
final design. 

 
Table 1. Component List 

Component Model # 

VCO ROS-2536C-119+ 

Splitter Mini SP-2U1+ 

Amplifier for Transmitting MMG20241H 

Amplifier for Receiving MGA-13316 

Mixer SIM-63LH+ 

Low Pass Filter LTC1563 

Attenuator HMC655LP2E 

 
PCB Design 
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After selecting the components, we began designing the PCBs according to the 
schematics which were provided on the component’s data sheet. Shown below are the RF and 
baseband schematics as well as the layouts. We made sure to align the pin headers on both 
boards so we can stack the RF board on top of the baseband board, making the overall system 
compact and durable. 

 
 
Fig 4. Baseband Schematic 

 
Fig 5. RF Schematic 
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Fig 6. Baseband Layout 
 

 
Fig 7. RF Layout 
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Figure 8. Assembled PCBs 
Antenna Choice 

When selecting the antenna, we made sure to obtain one with high gain in order to 
maximize the received signal. Because of this, we decided to pick an antenna with high 
directivity as we know that our targets are not dispersed and we care more for gain to allow for 
far distance measuring. This led us to purchase a Yagi antenna from Kent Electronics at 
wa5vjb.com as it provided a max signal of 10-11dBi at 2.4 to 2.45GHz. Below shows the 
antenna specification sheet which is accessible on Kent Electronic’s website at 
http://www.wa5vjb.com/pcb-pdfs/Yagi2400.pdf 

 
Fig 9. Antenna Specification Sheet 
 
Final Design Testing 
Shown below are the individual testing of the components. 
LPF  

6 

Leo-tab
Highlight



 
Fig 10. LPF Demonstration 
 
LPF 3dB 

 
Fig 11. LPF Cutoff 
 
Complete System Results 

We began by testing inside the lab room and also in the Kemper hallway. We found that 
we were getting results with a maximum distance reading of roughly 12 meters in the hallway 
but we noticed a good amount of noise was prevalent in our results which led us to test outside. 
Figure 12 shows the noisy hallway results which is most likely due to reflection. 
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Fig 12. First Test Results 
 
We expected better results even when testing in the hallway and this led us to notice that the low 
noise amplifier was not working properly on our PCB. We found the problem was caused by two 
unconnected nodes and so as a quick fix, we directly attached two LNAs which were used in 
quarter one at our receiving side. We then tested our system outside using a power supply giving 
8 volts. The only purpose of the 8V supply was to provide a regulated 5V input to the rest of the 
system, however we decided that the battery pack was stable enough to power everything, so we 
choose to bypass the voltage regulator and directly power our system using the provided battery 
pack. Using the battery pack provided mobility and greater simplicity to the system. We then 
made the rookie mistake of having our system on the ground when testing which led to little to 
no results. The reflection off the concrete and grass when the radar was placed on the ground 
over powered any signal we wanted to read. After making the realization that the system needed 
to be elevated, we measured a maximum distance of 35 meters. Figure 13 shows the results we 
obtained in the field. The range in this plot is not calibrated correctly as the 0 meter position 
should be placed at where the yellow lines end which is at around 15 meters on this plot. This 
test also only utilized the cantennas as the Yagi antennas were not working properly at the time 
of the test. 
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Figure 13. Outside Field Test 
 
In an attempt to fix the unwanted yellow lines, we managed to find the MATLAB code which 
does the exact same processing as the Python code. We noticed that when the MATLAB code 
ran, the results were much more visible and provided no unwanted yellow lines. The only 
downside to this method was the processing time was much longer but we decided to utilize the 
MATLAB code from that point on as the better visibility of our radar results outweighed the con 
of having to wait an extra minute. After multiple tests, we finally arrived to the conclusion that 
the best configuration for our system was to use the cantenna as the transmitting antenna and use 
the Yagi antenna as the receiving antenna. After even more tests and calibrations, we also 
figured out that one extra LNA being attached to our receiving side provided us with the most 
optimal results. Shown below are results from our testing. 
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Figure 14. Matlab Code Test Run at 30 - 40 Meters 
 
This test shows the measurement of someone walking back and forth between the 30 meter and 
40 meter mark. After calibration, we were able to get accurate measurements with an error of 
about one meter. 
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Figure 15. Measurement Showing Max Range of Near 100 Meters 
 
This is our maximum range test and we were able to measure roughly 90 meters before the signal 
strength was too weak for us to make out any readings.  
 
Competition Day 

During the day of the competition we were able to get readings for all the targets. The 
final weight of the system was 390 grams with a 1.2 W power consumption. The readings are 
weaker than we had hoped, however, we were still able to discern the signal from the 
background. Maximum range was removed from the competition. We took separate 
measurements for each target for a total of 5 measurements. We then processed the audio files 
with MatLab and compared the RTI without clutter rejection and RTI with 2-pulse canceler 
clutter rejection plots to find the distance of the target.  

It had rained the day earlier so the water on the grass may have affected the clarity of the 
desired signal. Maximum range, however, was removed from the competition, so the drop in 
performance ultimately did not matter. Figure # shows the final configuration of the system with 
the housing.  
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 (a) 

(b)  
Figure 16. Final Testing Configuration 

 
(a)    (b) 
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(c)    (d) 

 (e) Figure 17. Competition Day Results 
 
Conclusion 

Overall, we learned that constructing a fully working radar system involves meticulous 
attention to detail and a good amount of luck. From purchasing enough components to 
connecting every node during PCB layout to debugging the complete system, we all agreed that 
the project, without a doubt, was an immense learning experience as problems we could have 
never predicted came up during the process. Minimal fixes such as testing the complete system 
outside instead of inside proved to greatly improve the measurements. 

The real life application of this radar is limited as we did not process the data in real time. 
We could further improve the usability of the radar if we had on-board processing and a display 
to see the measurements as they occur. 
 
Course Suggestions 
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● Reference exemplified final reports during quarter one labs in order to mitigate problems 
that can arise in quarter two and get students more familiar with the entire system. 
Although we knew about the reports, we did not refer to them until quarter two. One 
possibility is to provide final report URLs in quarter one prelabs for students to view. 

● Give the recommendation of purchasing at least three times the amount of components 
since each team will usually receive three PCBs and all PCBs may need to be soldered. It 
is usually cheaper to buy in bulk so there is not too big of a downside to doing this. 

 
Bill of Materials 
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Appendix A - Python Code 
# -*- coding: utf-8 -*- 
#range radar, reading files from a WAV file 
# Originially modified by Meng Wei, a summer exchange student 
(UCD GREAT Program, 2014) from Zhejiang University, China, 
from Greg Charvat's matlab code 
# Nov. 17th, 2015, modified by Xiaoguang "Leo" Liu, 
lxgliu@ucdavis.edu 
 
import wave 
import os 
from struct import unpack 
import numpy as np 
from numpy.fft import ifft 
import matplotlib.pyplot as plt  
from math import log 
 
#constants 
c= 3E8 #(m/s) speed of light 
Tp = 20E-3  #(s) pulse duration T/2, single frequency sweep 
period.  
fstart = 2260E6 #(Hz) LFM start frequency 
fstop = 2590E6 #(Hz) LFM stop frequency 
BW = fstop-fstart #(Hz) transmit bandwidth 
trnc_time = 0 #number of seconds to discard at the begining of the 
wav file 
 
 
window = False  #whether to apply a Hammng window.  
 
# for debugging purposes 
# log file 
#logfile = 'log_new.txt' 
#logfh = open(logfile,'w') 
#logfh.write('start \n') 
 
#read the raw data .wave file here 
#get path to the .wav file 
#filename = os.getcwd() + '\\running_outside_20ms.wav' 
filename = os.getcwd() + '\\range_test2.wav'     # The initial 1/6 of 
the above wav file. To save time in developing the code 
#open .wav file 
wavefile = wave.open(filename, "rb") 
 
# number of channels 
nchannels = wavefile.getnchannels() 
 
# number of bits per sample 
sample_width = wavefile.getsampwidth() 
 
# sampling rate 
Fs = wavefile.getframerate() 
trnc_smp = int(trnc_time*Fs) # number of samples to discard at the 
begining of the wav file 

 
# number of samples per pulse 
N = int(Tp*Fs)  # number of samples per pulse 
 
# number of frames (total samples) 
numframes = wavefile.getnframes() 
 
# trig stores the sampled SYNC signal in the .wav file 
#trig = np.zeros([rows,N]) 
trig = np.zeros([numframes - trnc_smp]) 
# s stores the sampled radar return signal in the .wav file 
#s = np.zeros([rows,N]) 
s = np.zeros([numframes - trnc_smp]) 
# v stores ifft(s) 
#v = np.zeros([rows,N]) 
v = np.zeros([numframes - trnc_smp]) 
 
#read data from wav file 
 
data = wavefile.readframes(numframes) 
 
for j in range(trnc_smp,numframes): 
    # get the left (SYNC) channel 
    left = data[4*j:4*j+2] 
    # get the right (Data) channel 
    right = data[4*j+2:4*j+4] 
    #.wav file store the sound level information in signed 16-bit 
integers stored in little-endian format 
    #The "struct" module provides functions to convert such 
information to python native formats, in this case, integers. 
  
    if len(left) == 2: 
        l = unpack('h', left)[0] 
    if len(right) == 2:  

  r = unpack('h', right)[0] 
        #normalize the value to 1 and store them in a two dimensional 
array "s" 
    trig[j-trnc_smp] = l/32768.0 
    s[j-trnc_smp] = r/32768.0 
  
#trigger at the rising edge of the SYNC signal 
trig[trig < 0] = 0; 
trig[trig > 0] = 1; 
 
#2D array for coherent processing 
s2 = np.zeros([int(len(s)/N),N]) 
 
rows = 0; 
for j in range(10, len(trig)): 
    if trig[j] == 1 and np.mean(trig[j-10:j]) == 0: 
        if j+N <= len(trig): 
            s2[rows,:] = s[j:j+N] 
            rows += 1 
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s2 = s2[0:rows,:] 
 
#pulse-to-pulse averaging to eliminate system performance drift 
overtime 
for i in range(N): 
    s2[:,i] = s2[:,i] - np.mean(s2[:,i]) 
 
#2pulse cancelation 
 
s3 = s2 
for i in range(0, rows-1): 
    s3[i,:] = s2[i+1,:] - s2[i,:] 
  
rows = rows-1 
s3 = s3[0:rows,:] 
  
#apply a Hamming window to reduce fft sidelobes if 
window=True 
if window == True: 
    for i in range(rows): 
        s3[i]=np.multiply(s3[i],np.hamming(N)) 
 
##################################### 
# Range-Time-Intensity (RTI) plot 
# inverse FFT. By default the ifft operates on the row 
v = ifft(s3) 
 
#get magnitude 
v = 20*np.log10(np.absolute(v)+1e-12) 
 
#only the first half in each row contains unique information 
v = v[:,0:int(N/2)] 
 
#normalized with respect to its maximum value so that maximum 

is 0dB 
m=np.max(v) 
grid = v 
grid=[[x-m for x in y] for y in v] 
 
# maximum range 
max_range =c*Fs*Tp/4/BW 
# maximum time 
max_time = Tp*rows 
 
plt.figure(0) 
plt.imshow(grid, extent=[0,max_range,0,max_time],aspect='auto', 
cmap =plt.get_cmap('gray')) 
plt.colorbar() 
plt.clim(0,-100) 
plt.xlabel('Range[m]',{'fontsize':20}) 
plt.ylabel('time [s]',{'fontsize':20}) 
plt.title('RTI with 2-pulse clutter rejection',{'fontsize':20}) 
plt.tight_layout()  
plt.show() 
 
#plt.subplot(612) 
#plt.plot(grid[5]) 
 
#plt.subplot(613) 
#plt.plot(grid[6]) 
 
#plt.subplot(614) 
#plt.plot(grid[20]) 
# 
#plt.subplot(615) 
#plt.plot(grid[30]) 
 
#plt.subplot(616) 
#plt.plot(grid[40]) 

 
Appendix B MATLAB Code 
%MIT IAP Radar Course 20112.5 
%Resource: Build a Small Radar System Capable of Sensing 
Range, Doppler,  
%and Synthetic Aperture Radar Imaging  
% 
%Gregory L. Charvat 
 
%Process Range vs. Time Intensity (RTI) plot 
tic 
 
clear all; 
close all; 
 
% read the raw data .wav file here 
% replace with your own .wav file 
[Y,FS] = audioread('win3040.wav'); 
dbv=@(x) 20*log10(abs(x)); 
 
%constants 

c = 3E8; %(m/s) speed of light 
 
%radar parameters 
Tp = 20E-3; %(s) pulse time 
N = Tp*FS; %# of samples per pulse 
fstart = 2260E6; %(Hz) LFM start frequency 
fstop = 2590E6; %(Hz) LFM stop frequency 
BW = fstop-fstart; %(Hz) transmti bandwidth 
f = linspace(fstart, fstop, N/2); %instantaneous transmit frequency 
 
%range resolution 
rr = c/(2*BW); 
max_range = rr*N/2; 
 
%the input appears to be inverted 
trig = -1*Y(:,1); 
s = -1*Y(:,2); 
clear Y; 
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%parse the data here by triggering off rising edge of sync pulse 
count = 0; 
thresh = 0; 
start = (trig > thresh); 
 
for ii = 100:(size(start,1)-N) 
    if start(ii) == 1 && mean(start(ii-99:ii-1)) == 0 
        %start2(ii) = 1; 
        count = count + 1; 
        sif(count,:) = s(ii:ii+N-1); 
        time(count) = ii*1/FS; 
    end 
end 
 
%check to see if triggering works 
% plot(trig,'.b'); 
% hold on;si 
% plot(start2,'.r'); 
% hold off; 
% grid on; 
 
%subtract the average 
ave = mean(sif,1); 
for ii = 1:size(sif,1); 
    sif(ii,:) = sif(ii,:) - ave; 
end 
 
zpad = 8*N/2; 
 
%RTI plot 
figure(10); 
v = dbv(ifft(sif,zpad,2)); 

S = v(:,1:size(v,2)/2); 
m = max(max(v)); 
imagesc(linspace(0,max_range,zpad)*0.77,time,S-m,[-80, 0]); 
colorbar; 
ylabel('time (s)'); 
xlabel('range (m)'); 
title('RTI without clutter rejection'); 
xlim([0, 110]) 
set(gca, 'YDir', 'normal') 
set(gca, 'XTick', 0:10:110) 
 
%2 pulse cancelor RTI plot 
figure(20); 
sif2 = sif(2:size(sif,1),:)-sif(1:size(sif,1)-1,:); 
v = ifft(sif2,zpad,2); 
S=v; 
R = linspace(0,max_range,zpad); 
for ii = 1:size(S,1) 
    %S(ii,:) = S(ii,:).*R.^(3/2); %Optional: magnitude scale to range 
end 
 
S = dbv(S(:,1:size(v,2)/2)); 
m = max(max(S)); 
imagesc(R*0.77,time,S-m,[-80, 0]); 
colorbar; 
ylabel('time (s)'); 
xlabel('range (m)'); 
xlim([0, 110]); 
set(gca, 'YDir', 'normal') 
set(gca, 'XTick', 0:10:110) 
title('RTI with 2-pulse cancelor clutter rejection'); 
toc 
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