Author: Weihui Liu

Application Note about Signal Processing

Introduction

In our team, | am responsible for using microcontroller to finish the signal processing and
soldering the PCB.

This application note is focused on the signal processing portion of the project. After RF
signal is received by the receive-end antenna, it goes through an amplifier, a mixer, and
lastly an active low-pass filter. The output of the active low-pass filter will be fed into an
ADC. For our quarter one design, we used the laptop computer’s sound card as the ADC.
Then we process the ADC digitized signals with matlab. In order to build an independent
and portable Radar System and improve our radar system, our group decided to use the
Teensy 3.1 board as the DSP device. Furthermore, the Teensy 3.1 has a proper ADC
output pin, it can generate a 3.3V signal. Therefore, we used the Teensy 3.1 to generate
the triangle wave as well.

The Method for Measuring Frequency

We used the excited library named FregMeasure of Teensy 3.1 to processing the input
signal. The library requires the input frequency as a digital level signal on the pin 3. The
best interval for measure is within 0.1 Hz to 100 kHz. As the graph shows below, the
Teensy 3.1 measures the elapsed time during a single cycle. This works well for relatively
low frequencies, because a substantial time elapses. At higher frequencies, the short time
can only be measured at the processor's clock speed, which results in limited resolution.

AN

Measure Time = 1 cycle

FreqMeasure



The basic commands of the Freqmeasure library

FreqMeasure.begin() -- Begin frequency measurement.

FreqMeasure.available() -- Returns the number of measurements available to read, or O if
none are unread. If program spends time on other tasks and a relatively fast waveform is
being measured, several readings may be available.

FreqMeasure.read() -- Read a measurement. An unsigned long (32 bits) containing the
number of CPU clock cycles that elapsed during one cycle of the waveform. Each
measurement begins immediately after the prior one without any delay, so several
measurements may be averaged together for better resolution.

FreqMeasure.countToFrequency(count) -- Convert the 32 bit unsigned long numbers from
read() to actual frequency.

FregMeasure.end() -- Stop frequency measurement. PWM (analogWrite) functionality may
be used again.

Analysis of the codes

The language of the Teensy 3.1 is similar to language C. In order to receive a reliable
result, the variable “sum” is used to store thirty times of the frequencies which the Teensy
measures. The average frequency of the thirty datas will be stored into the variable
“frequency” variable. The while loop keeps this program run continuously. Once the teesy
receive an input signal, it will record the time the signal can be detected in one cycle and
store the answer into variable “sum”; and the times will be stored into variable “count”.
Finally, we used the basic command “FreqMeasure.countToFrequency(sum / count) to
evaluate the answer. Also, the command “ Icd.print(frequency,6)” can display a six decimal
result on the LCD.

while (FregMeasure.available()) {
average several reading together
sum = sum + FregMeasure.read():
count = count + 1;
if jcount > 30) |
float frequency = FregqMeasure.countToFrecquencyisum / count);
sum = 0;
count = 0;
led,zetCurzor (0,00
led.print("Freq iz (Hz)™):
led.zetCurzor (0, 1)
led.print{frequency, &) ;
delay(1000) »



Serial_Output Example, With 3302 kHz

Based on our need, we decided to a sampling rate of 4ksps, which can detect object up to
10 meters away and with a resolution of 30Hz.

Requirements

At the end of each cycle, an interrupt routine runs. The actual capture of elapsed time is
done by hardware, so some interrupt latency is acceptable. At relatively low frequencies,
under 1 kHz, only minimal CPU time is used. However, as the frequency increases, the
interrupt demands more CPU time. If interrupts are disabled for more than 1 cycle of the
waveform, the measurement can span 2 or more cycles.



