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Abstract

At high frequency in the milliwave range, it allows for smaller frequency reuse distances than
lower frequencies. The short wavelength allows modest size antennas to have a small beam
width, further increasing frequency reuse potential. Even though radio waves in this band have
high atmospheric attenuation, they still have a range within one kilometer, which is suitable for
our testing purpose. For the senior design project, we hope to build a 24 Ghz radar system to win
the competition in range and speed detection. We aimed at smaller antenna to reduce the overall
weight, thinner PCB with advance material, and improve accuracy with high performance
electronics.

Introduction

Our team took the challenge to build a 24 Ghz Radar system that utilized the Infineon
BGT24MTRI11 Chip as the transceiver processor. This system involved touch screen on board
DSP, Tiva Programming, baseband PCB Design, and Antenna PCB Design. The 24 Ghz PCB
uses RO4350B Laminates material in order for the patch antennas to radiate out the signal at the
appropriate frequency. Our vision was to create high frequency speed detection and range
detection with a low weight and low power system.

Speed Detection:

Doppler's effect will allow the detection of speed. As the waves reflect back from the object
depending on its distance relative to the antennas, the incoming wave will change. By processing
the observed frequency with the input frequency, we can calculate the speed. The Doppler

frequency shift for active radar is as follows, where Fpis Doppler frequency, Fr is transmit

frequency, V& is radial velocity, and C'is the speed of light:

I;.r
Fﬂzzxprx(g)

Range Detection:
As for the range detection, we will need to vary the emitting frequency with our DAC. Instead of

timing the system for distance, we are doing a frequency modulation. Frequency comparison
between two signals is considerably more accurate, even with older electronics, than timing the
signal. By measuring the frequency of the returned signal and comparing that with the original,
the difference can be easily measured.

Goals

Put together all the components into a single radar.

Improve Signal to Noise ratio

Implement on board DSP

Minimize production cost by reducing the size of the PCB’s



e (Control the system with a microprocessor and monitor the detection with a touch screen.

Description of the project
We divided the project into three team members - PCB Designer, Code Architect, and DSP.

The first part of the radar system was signal generation, transmission and reception. We used the
BGT24MTRI11 Chip to save the work of system architecture. A triangle wave at 60 hertz was
generated from the Microcontroller with the DAC’s for the Voltage Control Oscilloscope inside
the chip. The VCO would generate a 24 Ghz signal that pass onto a buffer. The buffer would
send out part of the signal at 23 kHz for testing purpose to ensure that the VCO working
properly. We could test it with the pin Q2. The rest of the signal would be split into a Power
Amplifier and Modular Port Adapter. After the power amplification, the signal radiates out at the
TX, which would be our patch antenna. The other signal that went into the Modular Port Adapter
would be feed into the LO Buffer and PPF, which then mixed with the received signal. We could
take the receiving end of the signal from IFQ, IFQX, IFI and IFIX.
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The received signal would feed to the Low Pass Filter and VGA Amplifier to produce a 1 Vpp
wave with a DC bias of 1.5V. This signal would be fed into the Tiva.

The second part was signal processing with Tiva Microcontroller. The input signal was fed into
one of ADCs on the Tiva board, turning the analog voltage in a digital value of size 16 bits.



Using the Tivaware library, the ADC was set to trigger at a rate of 50 kHz. Each time the ADC
obtained a sample, the value would be stored in a buffer of up to 1024 samples. When the buffer
became full, the uDMA would transfer the 1024 samples into an array of size 2048. The process
would repeat once more, creating an array of 2048 samples.

These 2048 samples would be then processed. A certain value was subtracted from each of the
samples to cancel out the DC component. The samples were then multiplied by a hamming
window in order to filter out the low frequency components of the sampled signal. A function in
the Tiva DSP library performed FFT on the samples, transforming it from the time domain to the
frequency domain. The max of the spectrum became obtainable. The index of the maximum
value would correspond to the frequency of the input signal. Once this frequency obtained,
calculations could be made to either the speed or the distance, depending on the mode of the
radar. Both the calculated frequency and the speed or distance would then be displayed on the
touchscreen attached to the Tiva board.

The third part was the PCB implementation of the circuit in the first part. We used two double
layer PCB. The first PCB was the antenna, and the second PCB was the baseband. We followed
the application guide for the BGT24MTRI11 chip to design the antenna PCB. It consisted of two
parts: the array patch antenna and the central chip layout for the infineon as the heart of the
board. Our antennas array was made with 4x4 patches with a feeding network, designed using
ADL and HFSS. The Low Pass filter PCB also included two DAC’s, DC to DC converter, and
amplifier. We also biased the output signal by 1.5V to account for clipping.

Design Details

The BGT24MTRI11 chip integrated all the design elements into one layout. With that

convenience, we followed the datasheet to design the PCB. Even though the layout seemed very

straight forward, we need to take into the consideration of minimal noise. To achieve it, we

placed the power line as far from the signal line as possible. We also varied the width of the line

to guarantee the power output, and the signal. We used both 0.254 mm and 0.381 mm tracks.
Design Rules Editor EA

Net Classes Editor | Global Design Rules

Net Classes:

Clearance Track Width Via Dia| Via Drill uVia Dia| uVia Drill
Default 0100 0254 0508 04064 0508 0127




BGT24MTRI11

1 Features

* 24 GHz transceiver MMIC
+ Fully integrated low phase noise VCO

+ Switchable prescaler with 1.5 GHz and 23 kHz output

+ On chip power and temperature sensors

+ Gilbert based homodyne quadrature receiver
+ Single ended RF and LO terminals

* Low noise figure NFges: 12 dB

+ High conversion gain: 26 dB

+ High 1 dB input compression point: -12 dBm
+ Single supply voltage 3.3 V

+ Power consumption 500 mW in continuous operating mode

+ 200 GHz bipolar SiGe:C technology b7hf200
*  Fully ESD protected device

+  VQFN-32-9 leadless plastic package incl. LTI feature

+ Pb-free (RoHS compliant) package

RoHS

Description

The BGT24MTR11 is a Silicon Germanium MMIC for signal generation and reception, operating from 24.0 up to
26.0 GHz. Itis based on a 24 GHz fundamental voltage controlled oscillator. Switchable frequency prescalers are
included with output frequencies of 1.5 GHz and 23 kHz. The main RF output delivers typ. 11dBm signal power to
feed an antenna and an auxiliary LO output is available to provide LO signal to separate receiver components.

A LMNA provides low noise figure and a RC polyphase filter (PPF) is used for LO quadrature phase generation of
the homodyne quadrature downconversion mixer. Output power sensors as well as a temperature sensor are
implemented for monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18pm SiGe:C
technology offering a cutoff frequency of 200 GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant

VQFN package.

FEATURES

Ultralow Power: Typical Operating Igc = GuA

Short-Circuit/Thermal Protected

Regulated 5V +4% Output Voltage

2.7V to 5V Input Range

No Inductors

Very Low Igg in Shutdown: <1pA

Output Current: 10mA (Vjy = 2.7V)
20mA (Vg = 3V)

Shutdown Disconnects Load from Vi

= |nternal Oscillator: 700kHz

= Compact Application Circuit (<0.1 in2)

= §-Pin MSOP and SO Packages

APPLICATIONS

= SIM Interface Supplies for GSM Cellular Telephones
= | j-lon Battery Backup Supplies

= | gcal 3V to 5V Conversion

= Smart Card Readers

= PCMCIA Local 5V Supplies

DESCRIPTION

The LTC®1522 is a micropower charge pump DC/DC
converter that produces a regulated 5V output froma 2.7V
to 5V input supply. Extremely low supply current (BuA
typical with no load, < 1pA in shutdown) and low external
parts count (one 0.22uF flying capacitor and two 10uF
capacitors at Viy and Vqyr) make the LTC1522 ideally
suited for small, light load battery-powered applications.
Typical efficiency (Viy = 3V) exceeds 75% with load
currents between 50pA and 20mA. Modulating the SHDN
pin keeps the typical efficiency above 75% with load
currents all the way down to 10pA.

The LTC1522 has thermal shutdown and can survive a
continuous short from Vgyr to GND. In shutdown the
load is disconnected from Viy. The part is available in
8-pin MSOP and SO packages. The LTC1522 is pin
compatible with the LTG1516 in applications where
Vin 2 2.7V and lgyt < 20mA.

AT LTC and LT are registered trademarks of Linear Technology Carporation.



AD8367

FEATURES

Broad-range analog variable gain: -2.5 dB to +42.5 dB
3 dB cutoff frequency of 500 MHz

Gain up and gain down modes

Linear-in-dB, scaled 20 mV/dB

Resistive ground referenced input

Nominal Zw = 200

On-chip, square-law detector

Single-supply operation: 2.7 Vto 5.5V

APPLICATIONS

Cellular base stations

Broadband access

Power amplifier control loops
Complete, linear IF AGC amplifiers
High speed data I/O

MAX?291

General Description

The MAX291/MAK292MAX295/MAX296 are easy-to-Use,
8th-order, lowpass, switched-capacitor filters that can be
set up with corner frequencies from 0.1Hz to 25kHz
(MAXZ291/MAX292) or 0.1Hz to 50kHz (MAX295MAX296).

The MAX291/MAX295 Butterworth filters provide maxi-
mally flat passband response, and the MAX292/MAX296
Beszel filters provide low overshoot and fast settling. All
four filters have fixed responses, so the design task is
limited to selecting the clock frequency that controls the
filter's corner frequency.

An external capacitor is used to generate a clock using
the internal oscillator, or an external clock signal can be
used. An uncommitted operational amplifier (noninverting
input grounded) is provided for building a continuous-
time lowpass filter for post-filtering or anti-aliasing.
Produced in an 8-pin DIP/SO and a 16-pin wide SO
package, and requiring a minimum of external compo-
nents, the MAX291 series delivers very aggressive per-
farmance from a tiny area.

DACS8551

FUNCTIONAL BLOCK DIAGRAM
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Features

+ 8th-Order Lowpass Filters:
Butterworth (MAX291/MAX295)
Bessel (MAX292/MAX296)

¢ Clock-Tunable Corner-Frequency Range:
0.1Hz to 25kHz (MAX291/MAX292)
0.1Hz to 50kHz (MAX295/MAX296)
+ No External Resistors or Capacitors Required
+ Internal or External Clock

¢+ Clock to Corner Frequency Ratio:
100:1 (MAX291/MAX292)
50:1 (MAX295/MAX296)
+ Low Noise: -70dB THD + Noise (Typ)

4 Operate with a Single +5V Supply or
Dual +5V Supplies

+ Uncommitted Op Amp for Anti-Aliasing or Clock-
Naoise Filtering

+ 8-Pin DIP and SO Packages

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
DIGITAL-TO-ANALOG CONVERTER

FEATURES

- Relative Accuracy: 3LSB

= Glitch Energy: 0.1nV-s

= MicroPower Operation:

140pA at 2.7V

Power-On Reset to Zero

Power Supply: +2.7V to +5.5V

16-Bit Monotonic Over Temperature
Settling Time: 10us to £0.003% FSR
Low-Power Serial Interface with
Schmitt-Triggered Inputs

« On-Chip Output Buffer Amplifier with
Rail-to-Rail Operation

Power-Down Capability

Binary Input

SYNC Interrupt Facility

Drop-in Compatible With DACS8531/01
and DACBS8S550 (2's Complement Input)
- Available in a Tiny MSOP-8 Package

APPLICATIONS

Process Control

Data Acquisition Systems
Closed-Loop Servo-Control
PC Peripherals

Portable Instrumentation

DESCRIPTION

The DACS551 is a small, low-power, voltage output,
16-bit digital-to-analog converter (DAC). It is
monotonic, provides good linearity, and minimizes
undesired code-to-code transient woltages. The
DACB551 uses a versatile 3-wire serial interface that
operates at clock rates to 30MHz and is compatible
with standard SPI™, QSPI™, Microwire™. and
digital signal processor (DSP) interfaces

The DACS551 requires an external reference voltage
to set its output range. The DACS8551 incorporates a
power-on-reset circuit that ensures the DAC output
powers up at 0V and remains there until a valid write
takes place to the device. The DACS551 contains a
power-down feature, accessed ower the serial
interface, that reduces the current consumption of
the device to 200nA at 5W.

The low-power consumption of this device in normal
operation makes it ideally suited for portable, battery-
operated eguipment. The power consumption is
0.38mW at 2.7V, reducing to less than 1uW in
power-down mode.

The DACS551 is available in an MSOP-8 package.

For additional flexibilty, see the DACS8550, a 2's
complement-input counterpart to the DACS551.

FUNCTIONAL BLOCK DIAGRAM




Printed Circuit Board
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We built the PCB for portable use. The SMA connector would allow testing for the signal at
1.5Ghz that transmit from the Infineon. We designed the radar to enable maximum frequency

detection. The antennas faced opposite from the rest of the PCB’s for effective transmission by
lowering power dissipation and paths. We also thought of the practicality of use the radar system
in reality. This design allowed users to control the signal with the touch screen in the front and
point to the source with the antenna in the back.

Design Goal

Our goal is to design a compact, low power and light weight radar system that would also be
powerful at detecting short distance object with great accuracy and resolution. At millimeter
wave, the system could do imaging such as detecting the physical appearance of a rough surface
or the speed of micro fluid in a biomedical chip. With these ambitious goals in mind, we wanted
to build the best PCB, and Code with minimal noise.



Schematic

The schematic would be the earliest development of the radar project. It was determined by the
datasheet as well as calculations that we did off paperwork. We did extensive reading and
confirmation with experts to ensure the connections and all the circuit elements were appropriate.
For this design, we used KiCad. Our PCB Designer explored all the possible source of
information to learn about the tool. The result was a clean cut schematic that was easy to
understand with all the customized IC library.

The original KiCad library had very confusing items and most components that we used were not
found. Thus, we must draw our own. The schematic drawing was relatively easy because it only
involved the right pins, labels and location. Then, we had to make sure the schematic
components transfer properly. This process was transforming a rough sketch into the full Printed
Circuit Board, which would be what the actually board looked like with all the pins and modules.
When we did the schematic component to layout component matching, we rarely found the one
that fit exactly. Some of the pins size or distance were not correct, and some shape was not
found. Often, we needed to go into the editor and fix the size, shape, length, distance of the
surface mount or through hole pins. Sometimes, we would look for the online KiCad library, but
finding these designs could take up more time than designing them on our own. We finally
became very careful at designing and paying attention to details.

There were also difficulty in following the proper procedure in order to load the component into
the layout properly. We tried to load our antenna into the BGT24MTR11 Board so that we could
put together the design. KiCad did not allow HFSS file import directly. It turned out that we
must convert the HFSS file into a BIM file, and use the Component Creator function in KiCad to
generate the antenna. We also had to go into the text file of the converted file to change the
layout from front mask to solder mask, in order to have our antenna fully exposed. Even then, we
experienced resolution problem with the antenna layout. We went an extra mile to enlarge and
increase pixels of the antenna to make it appeared correctly on the layout. We needed to round
the edges of the antenna so that the radiation could have minimal loss. Fortunately through the
process of trials and error, we found a way to rough the feed in network of the array antenna,
which gave us a good testing results.

BGT24MTRI11
The infineon chip has 32 pins. There were many double pins for noise reduction, and testing. For

the pins that we did not need, we tied a 50 ohm resistor to it. We added a large and small
capacitor to the DC power supply line for AC reduction. We used Q2 for VCO testing, LO for
transmission testing, IFI for receiving testing, VEE for ground, TX for transmission antenna,
RFin for receiving Antenna, Vfine and Vcoarse for control VCO and CS, SLK, SI for SPI. For



LO and Q1, we need SMA connector due to its high frequency at 1.5 Ghz. We tested Q1 and LO
with the spectrometer.
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The feed-in system for TX, TXX, LO, RFin took some time to design. We needed to adjust the
width of the wire blocks connecting out from the BGT24MTR11 chip and into the chip. The
purpose is to reduce reflection from the load by impedance matching.
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Sending out the PCB

We sent out the PCB to Bayarea Circuit. Due to the customization of the 24Ghz antenna PCB on
RO4350B material, we waited three weeks before the fabrications finished. Before sending out
the antenna, we setup the Chamber for testing the antenna, making sure that it has -15 dbm at 25
Ghz so we know it operates at the right frequency. We also designed multiple versions of the
PCB for testing purposes. The regular PCB came back within a week. We ordered all the
electrical components from Digikey. These came within a week as well. With everything done,
we were at week 7. Everything came back to us at week 10, which put us into the soldering and

testing phrase.



PCB Soldering

For our designs, traditional soldering would not work with just rosin wires and hot iron. Due to
the compact design and small components, we used Rosin Flux (a type of soft rosin material) and
hot plates. We carefully put Flux onto all the solder mask and smaller amount on the Surface
mount components; such as the DAC’s, and amplifier. We set the hot plate to 200 degree celsius
for roughly 2-4 minutes. When the PCB heats up, the Flux turned into metal that glues all the
components onto the PCB. We examined the binding carefully under a microscope to ensure that
we are not shorting any of the pins or misplacing any components.

PCB difficulty

The most difficult part was making sure that the multiple pin surface mount chip would not be
shorting. When we placed the Flux onto the solder mask, there were always chances that we
would put extra. Since the solder mask pins were very small, a small leak of the Flux would glue
two pins together. We had to be patient about the soldering process to move the components in
circular motion so that the flux would move around evenly. In case there was noticeable electric
shortage, we must remove the components and take out the extra flux. Another concern was that
the IC cannot tolerate temperature over 180 degree celcius. Otherwise, the chip itself would
degenerate. Thus, we must move fast and accurately so that we would not waste time in high
temperature, exposing our IC to risk.

PCB results

BGT24MTRI11




ST HEREEC RO RS R RO bR, -
. .

| Baasiteasries

| o
A A AR A AT
454 A A A w4

L e N
ilﬁi?@l‘wr 1 P
ET

L8
o
L

o|w<w1ww|<v«oq1'oﬂgo




This was the antenna PCB in KiCad. The array antennas were on the top and bottom of the board
for transmission and reception. The feed in system was designed for 50 ohm resistance,
following the guideline from the Data sheet. Notice that we placed resistors to some of the pins.
It was because the board would transmit the signal at two phases with 90 degree difference to
cancel out the noise. To utilize the feature, it require more complicated setup. We only used one
phase of the signal and tie the other end to a high frequency 50 ohm resistor.

Low Pass Filter, DAC, DC-DC Converter, Amplifier
We designed a very compact circuit to fit everything onto one chip. The process took a lot of

planning, and trials & error. We used both side of the PCB to allocate space for wiring.
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The 3.3V would feed into the DC-DC convert (LTC1522) to ramp up to 5V for some of our
DAC, and low pass filter. The two DAC were hooked to the SPI in the TIVA. They would be
used for range detection with the VCO. The antenna signal would come back from IFI, which



would feed into the lower pass filter and AGC Amplifier. The final signal would be processed by
the TIVA at pin PEO.

Microcontroller Coding

Design

The intended design of the Tiva code was to have both the receiver and transmitter code for the
radar on the same Tiva launchpad. The Tiva was to initialize the SPI for the DACs and the
Infineon, the touchscreen, the ADC and the uDMA. After initializing all the needed peripherals,
the Tiva would enter an infinite while loop which only contains functions for processing the data
and the touchscreen inputs. At certain points during the while loop, interrupts for the DAC,
ADC, and the touchscreen would occur. The DAC interrupts would write to the DACs on the
PCB and modulate the signal on the Infineon. The ADC interrupts would take samples from the
received signal. The touchscreen interrupts would both update the screen and sample the
touchscreen at various points, searching for a finger press. The finger press interrupt would
allow the Tiva to switch between Doppler and Range modes.

The overall structure of the program can be seen from the main function of the Tiva. The purpose
and role of each function will be explained later in the report.

int main(void) {

InitBasics(),
InitGui(),
InitGuiTimer();
InitSSI();
InitDACTimer(),
InitDSP();
InitSamplingTimer (),
InitADC3Transfer();

IntEnable(INT ADCOSS3);
IntMasterEnable();

while(1)
{
if (¢_ucDataReady)

{

ProcessData(),



a

WidgetMessageQueueProcess(),
}/ while

}// main()

While this was the intended design of the Tiva, certain bugs were discovered during the
development of the code. One bug caused the touch part of the touchscreen to fail. Since the
touchscreen could not receive input, the two different modes, Doppler and Range, could not be
toggled. As such, original program had to be separated into two programs: one for Doppler and
one for Range. A possible solution was to use the buttons on the Tiva board to toggle the two
modes, but were not sued due to lack of time.

The other bug caused the touchscreen to fail to display when the DAC code was running. This
bug was complicated and had multiple aspects to it, which will be explained in a later section.
This caused the program to separate into two separate programs, one for transmitting and
receiving, which are loaded into different Tiva boards.The end design is one Tiva doing all the
receiver code and one Tiva doing all the transmitter code.

Devices
There are two main devices that are used in the signal processing: the Tiva and the display.

The device used is the Tiva launchpad, model EK-TM4C123GXL. The particular
microcontroller on the launchpad is the TM4C123GH6PM. The two Tiva boards used are of
different silicon revisions. One is silicon revision 6, also called Blizzard RB1. The other is
silicon revision 7, called Blizzard RB2. The silicon revision numbers affect the ROM calls in the
Tivaware library, as well as the types of bugs that the Tiva exhibit.

The display is the Kentec display originally meant to be a Stellaris Launchpad boosterpack,
model number EB-LM4F120-L35. Since the Tiva is an updated version of the Stellaris, the
Kentec display can be adapted for Tiva use.

Development of Code

Most of the code for the project was developed on Code Composer Studio, developed by TI. This
was for several reasons. The tutorial for the Tiva, the Tivaware Workshop, uses Code Composer
Studio as opposed to Kiel, Energia, or some other toolchain. Code Composer Studio also
provides an internal FFT function for the Tiva, allowing the plotting of the frequency domain of
the input signal. The final reason to use Code Composer Studio is due to the fact that much of the


http://www.ti.com/lit/er/spmz849e/spmz849e.pdf

code involving DSP is based on the code from the EuphonistiHack blog, which mainly uses
Code Composer Studio.

The code for the Tiva had borrows from three different sources: the EuphonistiHack blog, the
Tiva Workshop, and the Stefan and Joe.

Originally, the EuphonistiHack code was for a Frequency Analyzer for audio files. It was

designed using a Stellaris board along with the Kentec display. What was borrowed for this radar
project was the code involving sampling and the signal processing. Some parts, however, had to
be changed. For example, the EuphonistiHack code originally had two modes of operation for
DSP and sampling: DMA METHOD FAST and DMA METHOD SLOW. Which mode is
used depends on the sampling frequency of the project. DMA METHOD SLOW was used
when the sampling could not obtain 1024 samples before the next screen update. In order to
compensate, this mode used Ping-Pong buffers to transmit 256 samples at a time. This way, the
DSP could be performed on a set of samples while attempting to obtain more samples.

DMA METHOD FAST was used when the sampling speed was fast enough to obtain 1024
samples before the next screen update. Only one buffer of size 1024 is used instead of two size
256 buffers. For our radar project, only DMA METHOD_ FAST was used. This is because the
screen update for the radar is much slower than that our the EuphonistiHack Frequency
Analyzer, 1 Hz instead of 15 Hz.

While porting code, however, there were a lot of errors involving the variable types and naming.
For example, in the gui code for the EuphonistiHack project, the sRect struct has an element
sYMin. When compiling for the Tiva, however, this throws an error. This is because Tivaware
and Stellarisware structs have different element names. In Tivaware, sYmin is i16YMin. While
porting code over, this document by TI is used:
http://www.ti.com/lit/an/spma050a/spma050a.pdf.

Some of the code involving the SPI was borrowed from Stefan and Joe. The code that sets proper
sequence of bits for initialization of the Infineon, for example, is from their code. They also
showed us how to perform the SPI for DACs; that particular piece of code was later modified by
us. Their original code had SPI run in loop as follows (comments are removed for better
visibility):

for(:;)

{
inta =10,
while (a <= 4080)
{


http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-TM4C123G-LaunchPad/TM4C123G_LaunchPad_Workshop_Workbook.pdf
https://github.com/EuphonistiHack/launchpad-freq-analyzer
http://www.ti.com/lit/an/spma050a/spma050a.pdf

GPIOPinWrite(GPIO_PORTF BASE, GPIO _PIN 2, GPIO _PIN 2);
outputValue = a;
ROM_GPIOPinWrite(GPIO_PORTC BASE, GPIO PIN 6, 0);

data = highByte(outputValue);
data = Ox0F & data;
data = 0x30 | data,
writeData(data),
data =lowByte(outputValue),
writeData(data),

ROM _GPIOPinWrite(GPIO_PORTC BASE, GPIO PIN 6, GPIO PIN 6);
GPIOPinWrite(GPIO_PORTF BASE, GPIO_PIN 2, 0);
a=at4;

/

int b =4080;

while (b >=4)

{
GPIOPinWrite(GPIO _PORTF BASE, GPIO PIN 2, GPIO PIN 2);
outputValue = b;
ROM_GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN 6, 0);

data =highByte(outputValue),;
data = OxOF & data;
data = 0x30 | data;

writeData(data),
data =lowByte(outputValue),

writeData(data),

ROM_GPIOPinWrite(GPIO_PORTC BASE, GPIO PIN 6, GPIO PIN 6);
GPIOPinWrite(GPIO_PORTF BASE, GPIO _PIN 2, 1);

b =b-4;



Since we were originally going to have the SPI code for the DAC running parallel to the
sampling code on the same Tiva, we had to change the DAC code to utilize interrupts instead.
Based on examples in the Tiva workshop, we changed the code to the following:

void
Timer2AIntHandler(void)

{
TimerIntClear(TIMER2 BASE, TIMER TIMA TIMEOUT);

// If on the rising edge
if (edge) {

// Increment the data bits
outputValue += step;

// Check if at the peak or above the wave
if (outputValue >= peak) {

// Go from rising edge to falling edge
edge = ledge;

ez
Wi

// Else on the falling edge of the wave
else {

// Decrement the data bits
outputValue -= step;

// Check if at zero or below (below zero is bad)
if (outputValue <= 0) {

// Go from rising edge to falling edge
edge = ledge;

M
M else



// Write data
writel 2bit();

}// Timer2AIntHandler()

The above is the interrupt handler for the DAC code. Instead of defining the output value before
a while loop and decrementing inside of the loop, we defined the output value globally. Each
time the interrupt handler is called, outputValue is incremented or decremented depending on
whether the code is currently dealing with the rising or falling edge of the triangle wave.

Both the DAC code and DSP code will be explained in further detail later in the report. These
snippets of code are merely examples of how we borrowed code from various sources and
modified them to our needs.

Organization of Code
The code is organized into several different source files as well as well as their corresponding

header files.

The files arm_common_table.h, arm math.h, cmsis_ccs.h, core_cm0.h, core _cm3.h, core_cm4.h,
core_cmFunc.h, core_cmlnstr.h, and dsplib-cm4f.lib provide the functions for used during signal
processing. All these files are from the EuphonistiHack github.

The files doppler.c and doppler.h hold the main function of the program. They call functions
from the other source files.

The files dac.c and dac.h control the DAC code of the Tiva.

The files dsp.c, dsp.h, sampling.c, sampling.h, ti_hamming windows_vector.c, have to do with
the sampling and DSP code for the Tiva. Much of the code found here is borrowed from the
EuhponistiHack blog.

The files gui.c, gui.h, Kentec320x240x16 ssd2119 8bit.c, Kentec320x240x16 ssd2119 8bit.h,
touch.c, and touch.h deal with properly displaying the results onto the screen. The
Kentec320x240x16_ssd2119 8bit and touch files are from the EuphonistiHack blog.

The remaining files are ustdlib.c, driverlib.lib, grlib.lib, and tm4c123gh6pm_startup cs.c. The
library files are linked files from the Tivaware Library. The ustdlib.c file is also from the
Tivaware library and is used to properly format text strings onto the Kentec display. The last file
contains the interrupt vector table.



Receiver Code
This section will walk through step by step how the receiver code works.

First, the InitBasics() function in doppler.c initializes the clock speed to 80 MHz and allows the
use of floating point calculations, which will be important during the DSP step.

void InitBasics(void) {

ROM FPUEnable(),
ROM FPULazyStackingEnable(),

// Set clock to 80 MHz

ROM _SysCtlClockSet(SYSCTL _SYSDIV 2 5| SYSCTL USE PLL| SYSCTL XTAL 16MHZ
ISYSCTL_OSC_MAIN);

}// IntiBasics()

Then the initialization of the GUI is performed in the functions InitGui() and InitGuiTimer(),
both found in gui.c.

void InitGui(void){

/

// Initialize LCD screen

Vi

Kentec320x240x16 _SSD2119Init();

TouchScreenlnit(),
TouchScreenCallbackSet(WidgetPointerMessage);

/

// Add Widgets to screen.

/

WidgetAdd(WIDGET ROOT, (tWidget *)&g sBackground),
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sTitle);
WidgetAdd((tWidget *) &g sBackground, (tWidget *)&g sSampFreq),
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sReceivedFreq);
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sSpeed);



WidgetPaint(WIDGET ROOT);

/

// Update Sampling Frequency

/

usprintf(sampFreqText,"SampFreq: %d", g uiSamplingFreq),
CanvasTextSet(&g sSampFreq, sampFreqText);
WidgetPaint((tWidget *)&g sSampFreq);

M/ InitGui

InitGui() first calls Kentec320x240x16 _SSD21191Init(), which is from
Kentec320x240x16_ssd2119 8bit.c, which is from the Euphonitihack blog. How
Kentec320x240x16_SSD2119Init() works is not too important; it enables pins on port A and B,
writes to the Kentec display and turns it on.

TouchScreenlnit() is a bit problematic. This is a function from touch.c, found on both the
EuphonistiHack Github and the Tiva Workshop. The problem is that the two touch.c files are
different. In the original Tiva Workshop version of touch.c, the TouchScreenlnit() prepares and
ADC with the following code:

ADCSequenceConfigure(ADCO_BASE, 3, ADC TRIGGER TIMER, 0);
And later ....

TimerConfigure(TIMERI BASE, (TIMER CFG SPLIT PAIR |

TIMER CFG A PERIODIC |

TIMER CFG B _PERIODIC));
TimerLoadSet(TIMERI BASE, TIMER A, (SysCtiClockGet() / 1000) - 1);
TimerControlTrigger(TIMERI BASE, TIMER A, true);

The Kentec display needs to use an ADC on the Tiva in order to process finger presses; where
and how hard the finger press on the touchscreen corresponds to an analog voltage value, which
is then converted to a digital value on the Tiva through an ADC. The ADC is called every one
millisecond through Timerl. Using TimerControlTrigger(), the ADC is hardware triggered,
meaning that it bypasses the CPU or processor.

The code from touch.c from EuphonisticHack is different as seen here:



ADCSequenceConfigure(ADC1 _BASE, 3, ADC TRIGGER PROCESSOR, 1),
And later ....

void
Timer1AlIntHandler(void)
{
// Clear interrupt
TimerIntClear(TIMERI BASE, TIMER TIMA TIMEOUT);

// Trigger ADC to sample
ADCProcessorTrigger(ADCI _BASE, 3);
}// Timer1AlntHandler()

Instead of having the ADC be hardware triggered, the ADC is software triggered. When the
ADC was hardware triggered using TimerControlTrigger(), Timerl did not need at interrupt
handler because the CPU was always bypassed when Timerl calls the ADC. Now, Timerl calls
Timer1 AlntHandler(), which manually calls the ADC with ADCProcessorTrigger(). The reason
for this is because the DSP needs to use an ADC as well. Notice that TimerControlTrigger() does
not have any function parameters; it does not differentiate between ADCs. So when
TimerControlTrigger is called with both ADCs being hardware triggered, both the touchscreen
and DSP ADC will be called. In order to prevent that, only the DSP ADC is hardware triggered
and the touchscreen ADC is software triggered.

Going back to InitGui(), the next function is TouchScreenCallbackSet(). It also initializes the
touchscreen for processing presses. Since the touchscreen does not work, which will be
explained later, it is not important how this function works.

The next few lines of code attaches the canvases to the widget tree. Canvases are rectangles that
show up on the the Kentec Display. They can be modified to have different colors or show text.

They are defined in the Graphics section of the Tivaware library. They are initialized as a global
struct as seen here:

Canvas(g_sSampFreq, 0, 0, 0,
&g sKentec320x240x16 SSD2119, 0, 40, 320, 40,
(CANVAS STYLE FILL | CANVAS STYLE OUTLINE | CANVAS STYLE TEXT),
ClrBlue, ClrWhite, ClrWhite, g _psFontCm20),
sampFreqText, 0, 0);



This particular canvas is for displaying the sampling frequency on the screen. When the line of
code, WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sSampFreq), runs, the this
canvas becomes a child of the background canvas. This means that when displaying different
canvases on the Kentec display, the box containing the sampling frequency is above the
background picture.

The last few lines of InitGui() are:

usprintf(sampFreqText,"SampFreq: %d", g uiSamplingFreq),
CanvasTextSet(&g sSampFreq, sampFreqText);
WidgetPaint((tWidget *)&g sSampFreq);

Usprintf() is from the file ustdlib.c. The function works much like sprintf() in the C library,
which allows the conversion from integer to float. If one were to use the sprintf() function,
however, nothing shows up on the Kentec display. It appears that the normal sprintf() function
does not format the string correctly on a Tiva.

CanvasTextSet is macro found in the Graphics library which updates a canvas with a new string.
The reason that this macro is needed is because normal pointer reassignment does not work with
the Canvas struct. The canvas struct takes in a const char pointer for the its string, which means
that the string cannot update during runtime. Since the canvas struct is created at compile time,
we could not dynamically construct a new Canvas during runtime. The workaround is to use this
macro which creates a new const char pointer based on the new string and reassigns it to the
struct.

The last part, WidgetPaint() simply updates the screen based on the Canvas parameter. Passing in
the the Sampling Frequency Canvas means that only that particular canvas in updated.

The next function to discuss is InitGuiTimer() which is shown here:

void
InitGuiTimer()
{
// Enable the timer
SysCtlPeripheralEnable(SYSCTL PERIPH TIMER3),

// Full Width Periodic Timer using Timer
TimerConfigure(TIMER3 BASE, TIMER CFG PERIODIC);



// Set timer
TimerLoadSet(TIMER3 BASE, TIMER A, SysCtlClockGet()-1);

// Enable the gui interrupt
IntEnable(INT TIMER3A),

// When timer hits zero, call interrupt
TimerIntEnable(TIMER3 BASE, TIMER TIMA TIMEOUT);,

// Start the gui timer
TimerEnable(TIMER3 BASE, TIMER A),
Y/ InitGuiTimer()

The code here is pretty straightforward. It sets Timer3 to trigger at a rate of one Hz. Each time
Timer3 hits zero, updateGui() is called:

void updateGui(void) {

/

// Update Received Frequency

/
usprintf(reFreqText,"ReFreq: %d", reFreq),
CanvasTextSet(&g sReceivedFreq, reFreqText),
WidgetPaint((tWidget *)&g sReceivedFreq),

/

// Update Received Frequency

/

usprintf(speedText,"Speed: %d", speed);
CanvasTextSet(&g sSpeed, speedText);
WidgetPaint((tWidget *)&g sSpeed);

M/ updateGui()

Much like in the later part of InitGui(), this function updates the calculated frequency of the
received signal as well as the calculated speed.



Now that the Kentec display is on and the GUI timer is ticking down, the next step is to initialize
the DSP and sampling. This is achieved by InitDSP(), InitSamplingTimer(), and
InitADC3Transfer().

InitDSP() is simple, as seen here:
void InitDSP(void){

// Determine the
g HzPerBin = (float)g uiSamplingFreq / (float) NUM_SAMPLES;

// Call the CMSIS real fft init function
arm_rfft_init f32(&fftStructure, &cfftStructure, NUM_SAMPLES, INVERT FFT,
BIT ORDER FFT);

}// nitDSP()

When the 2048 point FFT function is called, the output is a spectrum with 2048 bins. The range
of each frequency that each bin represents depends on the sampling frequency divided by the
2048. g HzPerBin is that value. The other function is a function from the DSP library which
initializes the FFT function.

The next step is to initialize the sampling timer, as follows:

void
InitSamplingTimer()
{
// Enable the timer(
SysCtlPeripheralEnable(SYSCTL PERIPH TIMERO(),

// Full Width Periodic Timer using Timer(
TimerConfigure(TIMERO BASE, TIMER CFG PERIODIC);

// Enables ADC trigger output
TimerControlTrigger(TIMER(O BASE, TIMER A, true);

// Set timer by dividing system clock freq by sampling freq
// to get the # of clock cycles per period
TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g uiSamplingFreq - 1)),



// Enable the sampling interrupt
IntEnable(INT TIMEROA),

// When timer hits zero, call interrupt
TimerIntEnable(TIMERO BASE, TIMER TIMA TIMEOUT);,

// Start the sampling timer
TimerEnable(TIMERO BASE, TIMER A);
Y/ InitSamplingTimer()

The code is very similar to the GUI timer. One difference is that instead of using timer 3, it uses
timer 0. The other difference is that instead triggering at a rate of one Hz, it is now the Sampling
Frequency.

The next step is to set up the transferring of data between the ADC to the place to be processed.
This is initialized in the following function:

void InitADC3Transfer(void)

{
// Index of g ulADCValues
unsigned int uldx;

// Set data as not ready to be processed
g ucDataReady = 0;

// Init buffers by setting them all to 0
// Should go from 0 to 2048
for(uldx = 0; uldx < NUM_SAMPLES, uldx++)

{
g ulADCValues[uldx] = 0;

W for

// Configure and enable the uDMA controller
SysCtlPeripheralEnable(SYSCTL PERIPH UDMA),

// Enable the uDMA error interrupt
IntEnable(INT UDMAERR);



// Enable uDMA
uDMAEnable(),

// Sets the base address of the control table

// The control table is the 1024-byte-aligned base address
// that was set up with a preprocessor statement earlier
uDMAControlBaseSet(ucControlTable);

/
// Configure the ADC to capture one sample per sampling timer tick

// which is controled by Timer(
/

// Enable and reset the ADC
SysCtlPeripheralEnable(SYSCTL PERIPH ADCO);
SysCtlPeripheralReset(SYSCTL PERIPH ADCO0);

// Set up the ADC so that it will sample when Timer( times out
// It is Timer(0 which activates the ADC because it was configured
// with TimerControlTrigger()
ADCSequenceConfigure(ADCO _BASE, ADC SEQUENCER,
ADC TRIGGER TIMER,0);
ADCSequenceStepConfigure(ADCO BASE, ADC SEQUENCER, 0, ADC CTL CHO |
ADC CTL IE | ADC CTL END);

// Enable the sequencer

// ADC _SEQUENCER should be 3
ADCSequenceEnable(ADCO _BASE, ADC SEQUENCER),
ADClIntEnable(ADCO _BASE, ADC SEQUENCER);

/
// Configure the DMA channel
/

uDMAChannelAttributeDisable(UDMA CHANNEL ADCS3,
UDMA ATTR ALTSELECT |
UDMA _ATTR _USEBURST |
UDMA ATTR HIGH PRIORITY |
UDMA ATTR REQMASK),



// Use primary data structure for ADC3

// Uses 16 bit words

// Do not increment source address

// Increment destination address by 16 bits

// What's arbitration size

uDMAChannelControlSet(UDMA CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _SIZE 16| UDMA _SRC INC NONE |
UDMA_DST INC 16| UDMA_ARB_1);

// Use primary data structure and use ADC3
// Use basic transfer
// Source is something to do with ADC3 address
// Destination is g ulADCValues
// Transfer UDMA XFER MAX (1024) samples
uDMAChannelTransferSet(UDMA_CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _MODE BASIC,
(void *)(ADCO_BASE + ADC O _SSFIFO3
+ (0x20 * UDMA_ARB 1)),
g ulADCValues, UDMA XFER MAX);

// Enable the DMA channel
uDMAChannelEnable(UDMA CHANNEL ADC3);
M/ InitADC3Transfer()

The first half of the code deals with initializing the uDMA. The uDMA requires a control table
which aligns everything in sets of 1024 bytes and is set in the line

uDMA ControlBaseSet(ucControlTable). This is reason why even though the program performs
2048 point FFT, the uDMA can only transfer up to 1024 samples at a time. The interrupt in the
function IntEnable(INT UDMAERR) does not actually control the transfer of data for the ADC
but deals with errors generated by the uDMA. g ucDataReady is set to zero to signify that there
are not enough samples for the signal processing to begin.

The second half of the code deals with how the sampling and transferring of data should be like.
ADCSequenceStepConfigure() sets the ADC so that ADCO is used, it will only take one sample
at a time, put the value in the sequencer 3 (which is a buffer which only holds one sample), and

that the ADC will be controlled by an interrupt. uDMA ChannelTransferSet makes it so that the

uDMA always takes a sample from the same place, the ADC, and puts the sample into

g ulADCValues, moving one space over each time.



While in the context of the ADC, it is important to introduce the ADC interrupt handler which
will be called after 1024 samples are obtained.

void

ADC3IntHandler(void)

{
unsigned long ulStatus;
static unsigned long uluDMACount = 0;
static unsigned long ulDataXferd = 0,
unsigned long ulNextuDMAXferSize = 0;

// Clear the ADC interrupt
ADClIntClear(ADCO_BASE, ADC SEQUENCER);

// If the channel's not done capturing, we have an error
if(uDMAChannellsEnabled(UDMA_CHANNEL ADC3))

{

// Increment error counter
g ulBadPeriphlsr2++;

// Disable the ADC interrupt
ADCIntDisable(ADC0O_BASE, ADC SEQUENCER);

// Drop pending interrupts associated with ADCO
IntPendClear(INT ADCOSS3),

// Exit interrupt
return,

a
ulStatus = uDMAChannelSizeGet(UDMA_CHANNEL ADCS3);

// If non-zero items are left in the transfer buffer
// Something went wrong

if(ulStatus)
{

// Increment error counter



g ulBadPeriphlsrl++;

// Exit interrupt handler
return;

a

// Disable the sampling timer
TimerDisable(TIMERO BASE, TIMER A);

uluDMACount++;

// The amount of data transferred increments in sets of 1024
ulDataXferd += UDMA_XFER MAX;

if(NUM_SAMPLES > ulDataXferd)
{

if((NUM_SAMPLES - ulDataXferd) > UDMA XFER MAX)

{
ulNextuDMAXferSize = UDMA XFER MAX;

Wi

else

ulNextuDMAXferSize = NUM_SAMPLES - ulDataXferd;
M/ else

uDMAChannelTransferSet(UDMA_CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _MODE BASIC,
(void *)(ADCO_BASE + ADC O _SSFIFO3
+ (0x20 * UDMA_ARB 1)),
g ulADCValues + (UDMA XFER MAX *
uluDMACount),
ulNextuDMAXferSize);



// Enable channel with new settings
uDMAChannelEnable(UDMA_CHANNEL ADC3);

// Reset the timer to maximum
TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g uiSamplingFreq - 1));

// Enable the timer with new settings
TimerEnable(TIMER(O BASE, TIMER A);

M if
else

// Since data will be processed, set counters back to 0
uluDMACount = 0;
ulDataXferd = 0,

// Disable sampling for now while processing
ADCIntDisable(ADCO_BASE, ADC_SEQUENCER);

// Remove pending interrupts for the ADC
IntPendClear(INT _ADCO0SS3);

// Signal that we have new data to be processed
g ucDataReady = 1,
M/ else

1/ ADC3IntHandler()

There are two main parts to the interrupt handler. One part runs when there is not enough
samples to run the DSP. The other runs when there is enough samples in g ulADCValues to run
the DSP.

The if block runs when there is only 1024 samples in g ulADCValues. Since there needs to be
2048 samples before the data can be processed, the program must start sampling again. It seems
that 1024 samples is the maximum number of samples that can be transferred at a time before
uDMA has to be restarted again because the uDMA control table is only 1024 bytes in width.
The uDMAChannelTransferSet() function restarts the transferring of data into the next 1024
blocks in g ulADCValues.



The else block runs when there is 2048 samples in g ulADCValues. Since there are enough
samples to perform FFT, the sampling and uDMA transfer is turned off until the data can be
processed.

Now that everything has been initialized and the ADC interrupt handler has been introduced, the
next step is to have an infinite while loop run as seen here:

while(1)
{
if(g_ucDataReady)
{
ProcessData(),
a

WidgetMessageQueueProcess(),
}/ while

At various points through the while loop, interrupts will trigger based on the frequency set
earlier. For example, before the if statement is processed, a hardware trigger will interrupt 1024
times, making the ADC sample each time. After 1024 times, the ADC interrupt handler will be
called. Since there are less than 2048 samples, the sampling will resume. The touchscreen ADC
interrupt is called, attempting to trigger the ADC, but fails. Evaluating the if statement,

g ucDataReady is still False because there are not enough samples. It skips over to
WidgetMessageQueueProcess() which looks for any touchscreen finger presses. There are none
because the touchscreen is broken, so the loop starts again.

The gui updates, but there is nothing to print yet. Another 1024 samples are obtained so the ADC
interrupt handler is called again. With 2048 samples, the ADC turns off. The if statement
evaluates to True. So ProcessData() runs.

ProcessData() is defined in dsp.c and is presented here:

void ProcessData(void){

// For indexing
uint32 ti;

// For finding bin with highest power
float32 t maxValue;



for(i=0:i<NUM_SAMPLES:i++)
{

g fFFTResult[i] = ((float)g ulADCValues[i] - (float)0x800),// / (float)640;
M/ for

// Multiply samples by hamming window
arm_mult f32(g fFFTResult, ti hamming window vector, g fFFTResult, NUM SAMPLES);

// Calculate FF'T on samples
arm_rfft f32(&fftStructure, g fFFTResult, g fFFTResult);

// Calculate complex power of FFT results
arm_cmplx_mag f32(g fFFTResult, g fFFTResult, NUM SAMPLES * 2);

// find the maximum bin
arm_max_f32(g fFFTResult, NUM_SAMPLES, &maxValue, &i);

// Update received frequency
reFreq = (int)(1.205*g HzPerBin*i),

// Update speed

// Cast integer variables as floats to have more accurate division

// 24 GHz tranmitted

speed = (((float)reFreq/(float)g uiSamplingFreq) - 1.0)*2400000000.0;

// Clear the data ready bit and set up the next DMA transfer
g ucDataReady = 0;

uDMAChannelTransferSet(UDMA_CHANNEL ADC3 | UDMA PRI SELECT,
UDMA MODE BASIC,
(void *)(ADCO_BASE + ADC _O_SSFIFO3 +
(0x20 * UDMA_ARB 1)),
g ulADCValues, UDMA XFER MAX);

// Enable the timer and start the sampling timer

uDMAChannelEnable(UDMA _CHANNEL ADC3);

TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g uiSamplingFreq - 1));
TimerEnable(TIMERO BASE, TIMER A);



}// ProcessData()

ProcessData() first subtracts all the sampled data by 0x800, which is approximately 1.5 V based
on a scale from 0 to 3.3 V. The data is then multiplied by a hamming window in order to
removed the low frequency components. This hamming window is an array of values taken from
EuphonistiHack. Afterwards, FFT is performed on the data set. The program then searches for
the index with the maximum power. This bin corresponds to the frequency of the input signal.
By multiplying with the g HzPerBin, the input frequency is obtained. For some reason, the
frequency obtained is always off by a constant factor. This factor is determined experimentally
and is used to correct the result. The speed is calculated from this result. ADC and uDMA is
restarted and ProcessData() exits.

Back to the while loop, updateGui() runs and prints the received frequency and the speed onto
the screen. And it loops back to the beginning.

Transmitter Code

Compared to the receiver code, the transmitter code is much simpler. The only initialization is
two functions, InitSSI() and InitDACTimer().
InitSSI() configures certain pins for SPI, as seen below.

void InitSSI()
{
// for CLK and data
ROM _SysCtlPeripheralEnable(SYSCTL PERIPH SSI3);

// Delay for peripheral to initialize
SysCtlDelay(3),

// enable slave select port
ROM SysCtlPeripheralEnable(SYSCTL PERIPH GPIOD);

// Delay for peripheral to initialize
SysCtlDelay(3);

// Enable NEW SS pin as GPIO
GPIOPinTypeGPIOOutput(GPIO_PORTD BASE, GPIO PIN 1| GPIO PIN 2 |
GPIO _PIN 6);



// Configure pin to transmit (MOSI)
GPIOPinConfigure(GPIO _PD3 SSI3TX);

// Configure pins to be used as SSI Clock and Data
GPIOPinTypeSSI(GPIO _PORTD BASE, GPIO _PIN 0| GPIO PIN 3);

// Initializes SSI

// Parameters are:  base address of the SSI

/ the clock supplied to the SSI

/ data frame format

// configure SSI as master as opposed to slave

// the bit rate (should be lower than system clock by at least factor of
/ 4)

/ word size

SSIConfigSetExpClk(SSI3_BASE, SysCtlClockGet(), SSI FRF MOTO _MODE 0,
SSI MODE MASTER, SysCtlClockGet()/4, 8),

// Configure pin as a clock
GPIOPinConfigure(GPIO _PD0 SSI3CLK);

// Enable SSI
ROM SSIEnable(SSI3_BASE);

ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO _PIN 6, 0); //SS low
writeData(0x00); // Send the upper byte

writeData(0x18); // Send the lower byte

ROM _GPIOPinWrite(GPIO_PORTD _BASE, GPIO _PIN 6, GPIO _PIN 6; //SS High

M/ InitSSI()

The SPI clock is set to transmit at an eighth of the system clock through PDO. The data is set to
transmit through PD3 with a work size of one byte. PD1, PD2, and PD6 are all configured as
chip select pins. The first two are for the two 16 bit DACs and the last one is for the Infineon.
The Infineon only needs to be initialized once. This is done by writing 0x00 and 0x18 to the
Infineon.

The initialization of the DAC timer is much like the previous timers and is presented below:

void



InitDACTimer(void)
{

const uint32 _t timerFreq = 10000,
uint32 t ui32Period; // Determines the cycles

// Enable the configuration of Timer2
SysCtlPeripheralEnable(SYSCTL PERIPH TIMER?2),

// It loads
TimerConfigure(TIMER2 BASE, TIMER CFG PERIODIC);

// Divide system clock freq by constant to get # of clock cycles
// for the timer to count down
ui32Period = SysCtlClockGet() / timerFreq,

// Set it to the clock frequency
TimerLoadSet(TIMER2 BASE, TIMER A, ui32Period -1),;

// Enable the interrupt associated with this timer
IntEnable(INT TIMER2A),;

// Set the interrupt to be called when the timer
// runs out

TimerIntEnable(TIMER2 BASE, TIMER TIMA_TIMEOUT);

// Enable the timer
TimerEnable(TIMER2 BASE, TIMER A);

M/ InitDACTimer()

The timerFreq variable can be changed to alter the frequency of the triangle wave. By increasing
the frequency of new DAC values, the frequency of the triangle wave should increase as well.

When the program enters the while loop, the receiver code should run. At certain intervals, the
DAC interrupt triggers, calling the interrupt handler seen here:

void
Timer2AIntHandler(void)
{



// Clear the timer interrupt.
TimerIntClear(TIMER2 BASE, TIMER TIMA TIMEOUT);

// If on the rising edge of the wave
if (edge) {

// Increment the data bits
outputValue += step,

// Check if at the peak or above the wave
if (outputValue >= peak) {

// Go from rising edge to falling edge
edge = ledge;

a
a

// Else on the falling edge of the wave
else {

// Decrement the data bits
outputValue -= step;

// Check if at zero or below (below zero is bad)
if (outputValue <= 0) {

// Go from rising edge to falling edge
edge = ledge;

a
M/ else

// Write data
writel 6bit();

M/ Timer2AIntHandler()



As explained earlier, the first part of the code checks whether the program should printing out
values for the rising or falling part of the triangle wave. Depending on whether the program is on
the rising or falling edge of the wave, the outputValue is either incremented or decremented. The
there is some logic to check whether the program is at the peak or trough of the wave. If the
outputValue is above 2*(N bits)-1 or below zero, the program switches to either the falling or
rising edge respectively.

The last part of the interrupt handler is either write12bit() or write16bit(), depending on the
which DAC is being used. If the 12 bit DAC is being used, then the code becomes something
like this:

void writel2bit(void)

{
ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO _PIN 1, 0); //SS low

// 12 bit DAC

data = highByte(outputValue); // Take the upper byte
data = Ox0F & data;

data = 0x30 | data,

writeData(data); // Send the upper byte

data = lowByte(outputValue), // Shift in the 8 lower bits
writeData(data);, // Send the lower byte

ROM_GPIOPinWrite(GPIO_PORTD BASE, GPIO PIN 1, GPIO PIN 1); //SS High

Y/ writel 2bit()

The 12 bit DAC has 4 control bits and 12 bits of data. The control bits are always 0011 and the
data bits depends on the outputValue. The CS is set low to write and set high when finished. This
particular piece of code only shows setting one DAC at a time. In order to test the Infineon, we
set the other input of the VCO to Vcc for convenience.

Writing to the 16 bit DAC is similar as seen here.

void writel 6bit(void)

{
ROM_GPIOPinWrite(GPIO_PORTD BASE, GPIO _PIN 1, 0); //SS low
writeData(0x00), // Control bits



writeData(outputValue), // Send the upper byte
writeData(outputValue); // Send the lower byte
ROM _GPIOPinWrite(GPIO_PORTD BASE, GPIO _PIN 1, GPIO _PIN 1); //SS High

M/ writel 6bit()

Instead of having 12 data bits, there are 16 data bits. There are two control bits that are supposed
to be 00 and six don’t care bits, so the 0x00 is written in first.

Problems with the Code

As said earlier, there are a few problems with the Tiva code. One of them is the software trigger
for the ADC not working. While the processor should be able to call the ADC as long as
IntMasterEnable() is called, the ADC for the touchscreen does not work. Since we only have one

working ADC that is hardware triggered, we reserved it for the sampling.

Another problem is the DAC code and the GUI code interfering with each other. While the
Kentec display is active, the SPI stops working. It seems that as long as the initialization function
for the Kentec screen runs, the DAC stops outputting a voltage.

Antenna
The patch design

In our quarter one design, we use coffee can as our antenna. The cans worked great, but they
were oversized and impractical for 2.4 Ghz. We chose to do a patch antenna because it can be
directly printed onto the PCB with the Infineon chip. A microstrip antenna is fed by a microstrip
transmission line. It is made with high conductivity material. The patch is of length L, width W,
and sitting on top of a substrate of thickness h with permittivity e. . In our case, we use the
RO4350B substrate material.

The center frequency can be given by
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The RO4350B has dielectric constant 3.48+/- 0.05, z direction, 10 Ghz/23 Celsius.



The width W of the miscrostip antenna controls the input impedance. Larger widths also can
increase the bandwidth. L is the resonant dimension. The width W is usually chosen to be larger
than L. W=1.5 L is typical. The advantages of using a patch antenna are low profile, easy to
fabricate, feed and use and patterns are somewhat hemispherical.

Feed-in System

The patch antenna array uses a series of T-junction power dividers. These power dividers are
three port networks. For the transmitting antenna, the input power is divided in in half to each of
the other two output ports. For the receiving antenna, the input signal from each input arm is
transferred to the output port. Since the power can be split in half or added together, the
T-junction power divider is reciprocal. Since three port networks cannot be matched, reciprocal,
and lossless at the same time, this power is lossy.

Test/Measurement Result
24 Ghz Antenna

We modified Hao’s design to come up with this antenna. We used Hao’s feed system for
impedance matching which saved us a lot of time for designing the antenna. We used graphical
tools to round out all the edges and resized each patches. In our HFSS, we observed a high
efficiency operation at 25 Ghz. The stimulation is varied by the actual graph below.
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The antenna has an operating frequency at around 25 Ghz. S11 is the reflected power radio 1
trying to deliver to antenna 1. Thus, we have a reflection coefficient or return loss. Our antenna
has S11 =-30 dB at 25 Ghz. This implies that if 3 dB of power is delivered to the antenna, -27
dB is the reflected power. In this case, it will be very low so majority of the power is radiated.

BGT11MTR24 L.O output




We tested the LO using the SMA connector to the Spectrometer. We observed a strong signal
radiating out at the transmitter. The signal supposed to be 24 Ghz, but for testing purpose the
chip puts it down to 1.5 Ghz.

BGT24MTR11 Q2 Output
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The Q2 is the testing pin for the VCO. Inside the transceiver, the original VCO frequency is
divided by 16 then by 65536 to produce a 22.8kHz signal at 24Ghz. We see a 19 kHz output,
which gives us a roughly 22 Ghz. We can increase the voltage for the VCO to generate a higher

frequency. Nevertheless, Q2 indicates functional VCO.

BGT24MTRI11 IFI, IFIX, IFQ.IFQX Output




From the output of the system, we observed a saw-wave. We are not sure what causes the
problem but this waveform is not what our program is designed to analyze. The wave has an
amplitude of roughly 500 mV, which indicates that it is not just noise. We would expect a
sinusoidal wave, but the system is not perfect. With more time and processing tools, we might
still calculate the speed or the doppler's effect from these waves.

Low Pass Filter and Amplifier
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We set the function generator to 22 kHz, which act as the real signal that comes from the
antenna. This signal is feed into the low pass filter which has a cut off frequency at 23 kHz. After
the low pass filter, it gets amplified to 1 Vpp. Then, it returns to the TIVA ADC for processing.

DAC
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We programmed the DAC to generated a clean triangle signal for the range testing. The Vpp is
3.28 V, which can activate the VCO to generate a frequency from to 21- 25 Ghz.

Frequency Measurements
FE

The Tiva successful measures a signal of a given frequency. The frequency has a certain amount
of error in it, as seen in the picture. The speed does not seem to update correctly. The following
table shows the calculated frequency compared to the input and sampling frequency. All
measurements are done with a function generator with 0.8 Vpp and 1.5 V offset. The 1.5 V offset
is important because the DSP assumes a 1.5 V offset.

Input Frequency Sampling Frequency
50 Hz 5 kHz 50 kHz
1 Hz 1 0 Hz 0 Hz
10 Hz 10 8 29
100 Hz N/A 100 88
1 kHz 1003 1000
2 kHz N/A 2000




3 kHz 3000
4 kHz 4030
5 kHz 5030
6 kHz 6030
7 kHz 7031
8 kHz 8031
9 kHz 9031
10 kHz 10061
11 kHz 11061
12 kHz 12061
13 kHz 13062
14 kHz 13062
15 kHz 15062
16 kHz N/A

Instead of needing twice the sampling frequency to measure a given input frequency, about three
times the input frequency is needed. This could be due to noise.

Possibility for future extension

Low Pass Filter Design

The low pass filter designated after receiving the signal, needs to be linear phase. It should be
linear phase primarily because we want all the frequency component of our signal to get shifted
the same amount. Otherwise we would get a different type of signal at different frequency than
the actual one at the output of the low pass filter. This case would be called as phase distortion or
delay distortion. The derivative of the phase response of the filter which is called the group delay
of the filter represents the amount of delay a signal would face after entering into the filter. If our
filter has linear phase, its group delay would be constant, which means all the frequency
component of our signal would have same amount of delay. In order to have the linear phase
filter, we need to select a FIR filter. FIR filter stands for finite impulse response. In order to have
the FIR filter to be linear phase, its coefficients needs to be symmetric. In our design, we



eventually decided to use MAX 291 chip as our low pass filter since we were allowed to use
ready chips. One other possible case for our low pass filter design would be to program a FIR
filter where its coefficients are evenly symmetrical around a center.

Suggestions

Using competition to decide the outcome of student’s grade may not be a very good idea.
Engineering students are just exposed to reality projects, and they may not have the foresight to
sense the difficulty of a project that is out of their boundary. The nature of competition requests
students to build “the best” radar system. Building a system that is win worthy requires more
than undergraduate knowledge. This is not feasible due to the fact that most senior students do
not have the extra time to pour their full passion into the project. As a result, it leads to a
situation which students dream too big, and not enough time to realize their goals. Our team tried
what we could, and even worked with a couple other team on the same chip. We designed the
PCB and wrote the code, but the system with on board DSP is prompt to more problems than
results. We can not fulfill our project objective, which is to create a functional system.

A suggestion for next year is to have an advanced radar system in mind, and ask students to build
it, and improve upon it. For example, our 24 Ghz system could be a very good practice. It will
take ten weeks for students to finish. If the entire class can use the same chip, students can
discuss with their classmates more often to facilitate better result. Our code and PCB can serve
as the basis of their system implementation.

Conclusion
Although we were not able to successfully to create a working radar system, we were able to get
many of the individual parts working. In our struggles we learned a lot of RF system design.



