EEC 134 Application Note

Tiva Programming

Patrick Huynh



Introduction

This application note will cover Tiva programming for radar signal processing. The intended
audience are students that have a bit of background in wireless systems and C programming, but
not necessarily much knowledge in embedded systems.

There will be two parts to this application note. Because it was so difficult to figure out how to
properly learn Tiva programming, the first part will be a meta-tutorial on how to learn
programming for the Tiva. It will not necessarily go in-depth, step-by-step how to use Code
Composer Studio. Rather, it will provide an outline of useful resources on how to learn Tiva
programming. In addition, some less known, but useful features of Code Code Composer Studio
will be demonstrated.

The second part of this application note will go over the code for the radar. This section is the
same as the programming section of the Team Hero Group Report.

Tiva Programming Meta-Tutorial

Starting out
In order to use the Tiva, special software is needed to program the Tiva. There are several

different types of software, with Energia being the easiest, Kiel being of medium difficulty, and
Code Composer Studio having the steepest learning curve. That being said, this tutorial will
assume that you use Code Composer Studio. The reason is that there is a lot of resources for
programming with Code Composer Studio. There is also some useful features related to signal
processing that only Code Composer Studio can perform.

The first step to learning how to use Code Composer Studio and Tiva Programming in general is
to read the Tiva Workshop Student Guide. Lab 0 will cover how to go over how to install Code

Composer Studio and obtain the Tivaware library, which is a contains many useful functions for
programming the Tiva. Tivaware is very important; without it, programming the Tiva would be
doing direct register accesses. The reader should then go over labs 1-5, 8-11, and 13. This goes
over the basics of Tiva programming such as how interrupts work or how to set up a uDMA
control table.

While going through the workshop, make sure to consult the Tivaware Device Peripheral Library

User Guide as well as the Tivaware Graphics Library User Guide. If there is some function that

does not quite make sense, it is documented in one of these user guides. If for some reason, the
reader needs to do a direct register access in order to program the Tiva, consult the Tiva
datasheet. It has useful documentation on GPIO masking works or the specific pin that an ADC
channel corresponds to.


http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-TM4C123G-LaunchPad/TM4C123G_LaunchPad_Workshop_Workbook.pdf
http://www.ti.com/lit/ug/spmu298a/spmu298a.pdf
http://www.ti.com/lit/ug/spmu298a/spmu298a.pdf
http://www.ti.com.cn/cn/lit/ug/spmu300a/spmu300a.pdf
http://www.ti.com.cn/cn/lit/ds/spms376e/spms376e.pdf
http://www.ti.com.cn/cn/lit/ds/spms376e/spms376e.pdf

After going through the tutorials, the reader is ready to program the Tiva. Before immediately
going over some code, here are some hints on using Code Composer Studio. These examples are

either common problems that seem to occur while programming the Tiva or some less known
features.



Making a New Project

+s New CCS Project

CCS Project
Create a new CC5 Project.

Target: | Tiva C Series v| |Tiva TM4CL23GHEPM

Connection: ISteIIarisIn-Circuit Debug Interface j Werify |

% Cortex M [ARM] |

Project name: I example_project]

[¥ Use default location
Location: I Ch\Users\pahuynh'workspace_vl_\example_project

Browvse..,

j More...

Compiler version: IT[ vilh

b Advanced settings

= Project ternplates and examples

Creates an empty project fully initialized for ;I
the selected device. The project will contain

E| Empty Projects an empty 'main.c’ source-file,
N [ Empty Project

[&& Empty Project (with main.c)
[ Empty Assembly-only Project
[& Empty RTSC Project

E| Basic Examples

Itj,fpefilter text

Cancel

@ < Back Mext > Finish

When making a new project, make sure to define the Target as Tiva and the Connection as
Stellaris In-Circuit Debug Interface. Without this, there is no target config file in the project



directory and the program will not compile. While this seems very simple, this problem came up
many times with multiple people.

File

iCi- =

Edit View Project Tools Scripts Run Window Help
i % B - RN Ed S € iz aiknm

CiEigs el g vite G

[{ Project Explorer 53 1

[l

&

=

=

8

ﬁ dopplers

E| Includes

- Ci/tif cosvbfto

= Debug

(7= targetConfigs

- main.c

[ trmdc123ghBpm_s
Bl &% tmdcl23ghGpm.c

- qs-rgh

[]---‘[g testAntenna

EEET example_project [Active

- Nahiun
Mew

Add Files...
Copy
Paste
¥ Delete
Source
1 (=1
Rename...

Ctrl+C
Crl +4
Delete

Import
£ Export...

Show Build Settings...

Build Project
Clean Project
Rebuild Project

'] Refresh
Close Project
Build Cenfigurations »
Make Targets 2
Index 3
Debug As 3
Team +
Compare With 2
Restore from Local History...

Properties Alt+Enter

%5 Debug 53

E---ﬁ dopplers [Code Composer Studic - Device Debuge
L.p® Stellaris In-Circuit Debug Interface/CORTEX_M:

[£] main.c
1/*
2 * main.c
3 ¥
4int main(void) {
5
B return @;

7}
B

[ dac.c [n dac.h

[ doppler.



we Properties for example_project

It}-‘pe filter text

= Resource
Linked Resources
‘... Resource Filters
- General
=) Build
£ ARM Compiler
: Processor Options
Optimization
Include Options
. MISRA-C:2004
: -- Advanced Opticns
ARM Linker
‘.. ARM Hex Utility [Disable
.- Debug

Include Options

Configuration: I Debug [ Active ]

j Manage Configurations... |

Add dir to #Finclude search path (--include_path, -I)

"+ Add directory path

€8 8 5l

[ S{TIVAWARE_INSTALL

OK I Cancel

Workspace..,

File system...

JPECTy @ PrenToigue e [~ pTenoroue]

S AR

@ Show advanced settings

0K I Cancel |

Also make sure that you know how to properly link the Tivaware library to the project and
include it in the build options. While programming the Tiva, you will need to use functions from
either the Driver library or the Graphics library. Without linking or including it in the build
options, the program will not compile. Reread lab 1 and 2 of the Tiva Workshop Student Guide

if necessary.




Tiva Model Number

'+ CCS Debug - doppler5/dsp.c - Code Composer Studio
File Edit View Project Tools Scripts Run  Window Help

- EBRIERB - PR -LEizcinnn St i O
E 9= Variables &' Expressions | ifif Registers 57 | g Breakpoints
By Mame |Va|ue | Description
¥ GPIO_PORTF_AHB GPIO register offsets
&% EEPROM EEPROM register offsets
e SYSEXC System Exception Module register addresses
A% HIB Hibernation module register addresses
A& FLASH_CTRL FLASH register offsets
B S SYsCTL System Control register addresses
= & 10..99]
B il SYSCTL_DIDO 018050102 Device Identification 0 [Memory Mapped]
it SYSCTL_DIDO_VER 001 DIDO Version
ii8i SYSCTL_DIDO_CLASS 00000101 Device Class
i SYSCTL_DIDO_MAJ 00000001 Major Revision
B8l SYSCTL_DIDO_MIN 00000010 - Minor Revision
i SYSCTL_DIDL 0:10A1606E Device Identification 1 [Memory Mapped]
it SYSCTL_DCO 0x007FO07F Device Capabilities 0 [Memery Mapped]
it SYSCTL.DCL 0x13332FFF Device Capabilities 1 [Memory Mapped]
i SYSCTL_DC2 0<030FF337 Device Capabilities 2 [Memory Mapped]
il SYSCTL_DC3 0xBFFFSFFF Device Capabilities 3 [Memory Mapped]
a8l SYSCTL_DC4 0:0004F03F Device Capabilities 4 [Memory Mapped]

At some point while working with the Tiva, you may need to use ROM functions instead of the
normal versions of the function in order to save memory space. The problem with using these
functions is that in order to use them, you need to define the version of the Tiva in use. This is
because different versions of the Tiva have their functions located in different parts of the ROM.
So instead of doing #define TARGET IS BLIZZARD RAI (Blizzard is nickname for the Tiva),
you would need to use #define TARGET IS BLIZZARD RBZ2.You can check the model by
checking the certain registers while the program is in debug mode. The information is found in
SYSCTL DICO MAJ and SYSCTL DID0O MIN. You can check the silicon revision guide for
specific details on which numbers correspond to which model.

How to Display a Signal on Code Composer Studio
The radar program will be sampling a signal and putting the resulting data in an array. Using

Code Composer Studio, it is possible to takes values from this array and display the signal in the
time or frequency domain.


http://www.ti.com/lit/er/spmz849e/spmz849e.pdf

main.c dac.c dach doppler.c dsp.c 3% [H dsp.h ui.c Kentec320:2... sampling.c = A
PPl p p ] pling

26 /7 5
127 void ProcessData(void){

128

129 [/ For indexing

130 uint32_t i

131

132 // For finding bin with highest power
133 float32_t maxValue;

134
135 /f Ugly, ugly, ugly part where we have to move the ul samples into a float
136 // array because the fixed point fft functions in CMSIS seem to be not
137 // working. While we're at it, we might as well center the samples around
138 // @, as the (MSIS algorithm seems to like that.
139 For(i=B:1<NUM_SAMPLES;i++)
140 {
141 g fFFTResult[i] = ((float)g ulADCValues[i] - (float)ex38@);// / (float)ses; 1.5 V
142 //g fFFTResult[i] = ((float)g ulADCValues[i] - (float)exeee);// / 1.1 V
143 ¥ for|
144
145 /f Multiply samples by hamming window
A 2 £EETOaculE  $i h i indow_vector, g fFFTResult, NUM_SAMPLES);
Breakpoint (Code Composer Studic) 3
Toggle Breakpoint Ctrl+ Shift+B 5 FFFTResult);
Disable Breakpoint Shift+ Double Click
Breakpoint Properties... .
Breakpoint Types y MLEs NUM_SAHPLES ™ 2);

Go to Annatation Ctrl+1 Lnintin 024. _'—I
»

Add Bookmark...

Add Task...
7w Show Quick Diff Ctrl+Shift+Q
v Show Line Numbers
Folding »
Preferences...
3 Debug 32 T = B - Variables &7 Expressions Wi} Registers ©g Breakpoints i1
E1-4% dopplers [Code Composer Studic - Device Debugging] Identity | Name | Conditit
- Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Suspended) Df,,\ dac.c, line 248 (Tir Breakpoint
[ Properties for _ IEl ll
- Breakpoint Properties & Breakpoint Properties - o W
Properties | values
= Hardware Configuration
Type Breakpoint
=] Debugger Response
Cendition
Skip Count 0 =
mai = [m]
EZE / Action Remain Halted ;" ;I
27v Bl Miscellanecus Control Profiling
28 Group Disable a Group
29 Name Enable a Group
36 Execute Expression (GEL)
31 Read Data from File
32 Refresh All Windows
33
34 Update View
35 Write Data to File
36
37
38
39
48
41
42 This is what the IDE will do once the breakpoint has triggered and all logical conditions are Edit Property
43 met too
44
45
46
47
48 @ oK I Cancel |
49
56
51 // Calculate complex power of FFT results
52 arm_cmplx_mag_f32(g_fFFTResult, g_fFFTResult, NUM_SAMPLES * 2);
323
54 /4 find the maximum bin
g T e retrmecne www camise Smawareton 031 _l;l
L4

First set a breakpoint on some line. Go to Breakpoint Properties and change the Action from
Remain Halted to Refresh All Windows. Run the program in debug mode.



File Edit View Project R Scripts Run Window Help

e RE{Emg M

ik 00 W EalL RS A R A

[}

® ¥ = B $Debug K

GEL Files
[ Project Explorer 52 On-Chip Flash
5 doppler5 [Active-| ARM Advanced Features
T gsrgb Debugger Options >
5 testhntenna Pin Connect
Port Connect

Save Memory
Load Memory
Fill Memory

£ RTOS Object View (ROV)
iz RTOS Analyzer

- System Analyzer

X Hardware Trace Analyzer

, (& mainc Q) dace

7/ working.

e T = B 9= Varisbles &7 Expressions
[E-%% dopplerS [Code Composer Studio - Device Debugging] Ident Name
@ Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (Running)

Register

[J4+ dacc, line 248 (Tir Breakpoint
% dsp.c, line 146 (SC Breakpoint

[ dach  [c dopplerc  [2 dspc %% [B dsph [l guic  [g Kentec320x240:16 ssd2119 8bitc (¢ sampling.c

while we're at it, we might as well center the samples around

A Single Ti /1 @, as the CMSIS algorithm seems to like that.

¥ CCS Debug - dopplerS/dsp.c - Code Composer

/! Update ri
/} might nes
//refFreq =
refreq = (i

// Update s
// Cast intu
/1 24 GHz
speed = (((

Studio

File Edit “iew Project Tools Scripts Run Window Help

B B R s B

£ Image Analyzer £ Dual Time For(i=0; 1<NUM_SAMPLES; i++)
{
Profile » | [ FFT Magnitude g fFFTResult[i] = ((float)g_ulapcvalues[i] - (float)exsee);// / (float)sse; 1.5 v
. //g_frFTResult[i] = ((float)g ulaDCValues[i] - (float)exeee);// / 1.1 V
T i FFT Magnitude Phase o
1 Complex FFT

i FFT Waterfall // Multiply samples by hamming window
: arm mult £32(g fFFTResult, ti_hamming window vector, g fFFTResult, NUM SAMPLES);

// calculate FFT on samples
arm_rfft_f32(&fftStructure, g fFFTResult, g fFFTResult);

/} Calculate complex power of FFT results
arm_cmplx_mag_f32(g fFFTResult, g fFFTResult, NUM_SAMPLES * 2);

/7 find the maximum bin
arm_max_f32(g_fFFTResult, NUM_SAMPLES, &maxValue, &i);

eceived frequency
ed to multiple by the constant
(int)(g_HzPerBin*i);
nt)(1.205%g HzPerBin*i);

peed

eger variables as floats to have more accurate division
ranmitted

float)reFreq/(float)g_uiSamplingFreq) - 1.8)%2400060000.0;

RDeardH @iz oikn @ Fits vif vits oo
Project Explorer 5% & ¥ =8 Debug 52 S ¥ = B 9= Variables &7 Ex
ject Expl 3 g
(&5 dopplerS Graph Properties X/ |pler5 [Code Composer Studio - Device Debugging] Identity
7 gs-rgb g = T tellaris In-Circuit Debug Interface/CORTEX_M4_0 (Running) 4 dacc, line
s roperty alue
testAnt: v dsp.c, |
S testhnient |- Properties F14 depe, ine
Acquisition Buffer Size 50
Dsp Data Type 16 bit unsigned integer
Index Increment 1
Q Value 0
Sampling Rate Hz 1

& Display Properties
Aods Display
Data Plot Style
Display Data Size
Grid Style

Time Display Unit

9.uIADCValued |

b true
Line
200
Ne Grid

Magnitude Display Scale Linesr

sample

Use Dc Value For Graph [] false

Importl Exportl oK | Can:ell

// working. While we're at it, we might as well center the samples around
/7 @, as the CMSIS algorithm seems to like that.
[For (1=8; 1<NUM_SAMPLES; i++)

g fFFTResult[i] = ((float)g_ulaDCValues[i] - (float)exsee);// / (float)e4e; 1.5 V
f/g_fFFTResult[i] = ((float)g ulADCValues[i] - (float)exeee);// / 1.1 V
}// for

// Multiply samples by hamming window
larm mult_f32(g_fFFTResult, ti_hamming window_vector, g fFFTResult, NUM SAMPLES);

// Calculate FFT on samples
arm_rfft_f32(&fftstructure, g_fFFTResult, g_fFFTResult);

// Calculate complex power of FFT results
arm_cmplx_mag_f32(g_fFFTResult, g_fFFTResult, NUM_SAMPLES * 2);

// find the maximum bin
larm_max_f32(g_fFFTResult, NUM_SAMPLES, &maxValue, &i);

// Update received frequency

/7 Might need to multiple by the constant
|/ /reFreq = (int)(g_HzPerBin*i);

eFreq = (int)(1.285%g HzPerBin*i);

161
162
163
164

// Update speed
// Cast integer variables as floats to have more accurate division
// 24 GHz tranmitted

[d dscc  [W dach  [¢ dopplerc  [& dsp.c 5% [W dsph  [d guic [ Kentec320x240:16_ssd2119 Sbit.



arisbles as floats to have more accurate division

! mitted

speed = (((float)reFreq/(float)g_uisamplingFreq) - 1.0)*2400000000.0;

/ Clear the data ready bit and set up the next DA transfe

g_ucDataReady

UDMAChanne 1 TransferSet (UDMA_CHANNEL ADC3 | UDMA_PRI_SELECT,
UDHMA_MODE_BASTC,

(void *)(ADCO_BASE + ADC_D_SSFIFO3 + (6x20 = UDMA_ARB_1)),
£_ulADCValues, UDMA_XFER_MAX);

/ Enable the timer and start t
ubMAChanne 1 Enable(UDMA_CHANNEL

K|

e Single Time -1 52

2400

Go to Tools, then Graph, and select Single Time. In the Start Address, input the name of the
array containing the samples. This works because an array name in C is actually the address of
the first element in the array. The data type here is 16 bit unsigned integer because that is what is
used in the radar program described later. A sinusoid should appear. The small discontinuity is
due to the signal processing which momentarily stops the sampling.

x'% CCS Debug - doppler5/dsp.c - Code Composer Studie

iCi- N U BT L@ -2 ik 00 @ i A e e
[ Project Explorer &3 B % T = B % Debug 2 ¥ =9
e doppler5 Graph Properties ﬁ pler [Code Composer Studio - Device Debugging]
tellaris In-Circuit Debug Interface/CORTEX_M4_0 (Running)
B testAnten: Property i Value |
= Data Properties
Acquisition Buffer Size 50
Dsp Data Type 16 bit unsigned integer
Index Increment 1
Q Value 4]
Sampling Rate Hz 50000
Signal Type Real
Start Address g_ulADCValues
= Display Properties
Aois Display true [€] dac.c [R dac.h [€ doppler.c [£] dsp.c 2 [n dsp.h [g] guic [£] Kentec320:
Dats Plot Sty.le . Line // working. While we're at it, we might as well center the samples around
Frequency Display Unit | KHz // B, as the CMSIS algorithm seems to like that.
Grid Style No Grid For (i=;1<NUM_SAMPLES;i++)
Magnitude Display Scale Linear {
= FFT g._.fFF'_H}esult[i]I: ((f!oat)g_ulADC\Val.ues[i]I- (F:‘loatjbe%);_-’_" -’ (.flcat).&ie; 1.5
EFT Frame Size 2048 v ;;%_‘F TResult[i] = ((float)g_ulADCValues[i] - (fleat)exeee);// / 1.1V
FFT Order 11
m jl // Multiply samples by hamming window
arm_mult f32(g fFFTResult, ti hamming window_vector, g fFFTResult, NUM _SAMPLES);
// Calculate FFT on samples
arm_rfft_f32(&fftstructure, g_fFFTResult, g_fFFTResult);
// Calculate complex power of FFT results
arm_cmplx_mag f32(g fFFTResult, g fFFTResult, NUM_SAMPLES * 2);
// find the maximum bin
arm_max_f32(g_fFFTResult, NUM_SAMPLES, &maxValue, &1i);
// Update received frequency

// Might need to multiple by the constant
Import | Export | oK | Cancel ‘ /freFreq = (int){g HzPerBin*i);
reFreq = (int)(1.285%g HzPerBin™i);

161

162 // Update speed

163 /{ Cast integer variables as floats to have more accurate division
164 // 24 GHz tranmitted

165 speed = (((float)refreq/(float)g_uisamplingFreq) - 1.8)*2490668000.8;



4500

4200 4

3900

3600

3300 4

3000

2700

2400

2100 o

1800

1500 o

1200 4

900 o

600 -

300 o

DI 0‘5 1I 1'5 2' Z!E 3‘ 3‘5 ﬂ‘ 4‘5 5' 5'5 ﬁl ﬁ!E 7‘ 7.‘5 E‘ B.‘E ; 9‘5 1'0 10'.5 1‘1 11'5 1‘2 12‘5 1‘3 13‘5 1‘4 14'5 1'5 15:.5 1‘6 16‘5 1‘7 17‘5 1‘8 18'5
Sample

1000000
900000
800000
700000
600000
500000
400000
300000
200000 r

100000 ‘ ‘

, s

L — — T T — T T T T T T T — T T T — T T T T T T
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 & 95 10 105 11 115 12 125 13 135 14 145 15 155 16 165 17 175 18 185 19 195 20 05 A 2S5
Sample

In order to display the frequency domain, go back to Graph and choose FFT Magnitude. Do the
same thing as before with the time domain except now make the FFT 2048 points and include a
hamming window. The two graphs are of the same signal. The upper graph has an Acquisition
buffer size of 50 while the bottom one has a buffer size of 2048. It is interesting to note that the
input signal was actually a 10 kHz signal. Due to problems with the Tiva, it shows a lower
frequency.



Radar Code
Here is a guide to the radar code written by Team Hero. If you happen to have all the source and
headers files and the libraries properly linked, it should look something like this:

[75 Project Explorer &2 = =
--ff Binaries
; -l Includes

= Debug
== targetConfigs

- [h| arm_common_tables.h
- |n] arm_math.h

- [h| crmsis_ccs.h

-[n| core_cmilh

-[h| core_cm3.h

@ core_cmd_sirmd.h

- |n| core_cmé.h

- [h] core_cmFunc.h

-[h] core_cminstr.h

- €] dac.c
-|n| dac.h
- [ doppler.c
-[n] doppler.h
- €] dsp.c
- [n| dsp.h
- [ gui.c
-] gui.h

-|€] Kentec320x240:16_ssd2119 8bit.c
-] Kentec320x240x16_ssd2119_8bit.h
- [ sampling.c

- [h| sampling.h

@ ti_hamming_window_vector.c

- €] tmdcl23ghGpm_startup_ccs.c
g tmdcl23ghbGpm.cmd

-|g] touch.c

|| touch.h

@ ustdlib.c

i B driverlib.lib

. dsplib-cmdf lib

i grlib.lib




Design

The intended design of the Tiva code was to have both the receiver and transmitter code for the
radar on the same Tiva launchpad. The Tiva was to initialize the SPI for the DACs and the
Infineon, the touchscreen, the ADC and the uDMA. After initializing all the needed peripherals,
the Tiva would enter an infinite while loop which only contains functions for processing the data
and the touchscreen inputs. At certain points during the while loop, interrupts for the DAC,
ADC, and the touchscreen would occur. The DAC interrupts would write to the DACs on the
PCB and modulate the signal on the Infineon. The ADC interrupts would take samples from the
received signal. The touchscreen interrupts would both update the screen and sample the
touchscreen at various points, searching for a finger press. The finger press interrupt would
allow the Tiva to switch between Doppler and Range modes.

The overall structure of the program can be seen from the main function of the Tiva. The purpose

and role of each function will be explained later in the report.

int main(void) {

InitBasics(),
InitGui();
InitGuiTimer();
InitSSI();
InitDACTimer(),
InitDSP();
InitSamplingTimer(),
InitADC3Transfer(),

IntEnable(INT ADCOSS3);
IntMasterEnable(),

while(1)
{
if (¢_ucDataReady)

{

ProcessData(),



a

WidgetMessageQueueProcess();
}/ while

}/ main()

While this was the intended design of the Tiva, certain bugs were discovered during the
development of the code. One bug caused the touch part of the touchscreen to fail. Since the
touchscreen could not receive input, the two different modes, Doppler and Range, could not be
toggled. As such, original program had to be separated into two programs: one for Doppler and
one for Range. A possible solution was to use the buttons on the Tiva board to toggle the two

modes, but were not sued due to lack of time.

The other bug caused the touchscreen to fail to display when the DAC code was running. This
bug was complicated and had multiple aspects to it, which will be explained in a later section.
This caused the program to separate into two separate programs, one for transmitting and
receiving, which are loaded into different Tiva boards.The end design is one Tiva doing all the

receiver code and one Tiva doing all the transmitter code.

Devices

There are two main devices that are used in the signal processing: the Tiva and the display.

The device used is the Tiva launchpad, model EK-TM4C123GXL. The particular
microcontroller on the launchpad is the TM4C123GH6PM. The two Tiva boards used are of
different silicon revisions. One is silicon revision 6, also called Blizzard RB1. The other is
silicon revision 7, called Blizzard RB2. The silicon revision numbers affect the ROM calls in the

Tivaware library, as well as the types of bugs that the Tiva exhibit.

The display is the Kentec display originally meant to be a Stellaris Launchpad boosterpack,
model number EB-LM4F120-L35. Since the Tiva is an updated version of the Stellaris, the

Kentec display can be adapted for Tiva use.

Development of Code



http://www.ti.com/lit/er/spmz849e/spmz849e.pdf
http://www.ti.com/lit/er/spmz849e/spmz849e.pdf

Most of the code for the project was developed on Code Composer Studio, developed by TI. This
was for several reasons. The tutorial for the Tiva, the Tivaware Workshop, uses Code Composer
Studio as opposed to Kiel, Energia, or some other toolchain. Code Composer Studio also
provides an internal FFT function for the Tiva, allowing the plotting of the frequency domain of
the input signal. The final reason to use Code Composer Studio is due to the fact that much of the
code involving DSP is based on the code from the EuphonistiHack blog, which mainly uses

Code Composer Studio.

The code for the Tiva had borrows from three different sources: the EuphonistiHack blog, the
Tiva Workshop, and the Stefan and Joe.

Originally, the EuphonistiHack code was for a Frequency Analyzer for audio files. It was

designed using a Stellaris board along with the Kentec display. What was borrowed for this radar
project was the code involving sampling and the signal processing. Some parts, however, had to
be changed. For example, the EuphonistiHack code originally had two modes of operation for
DSP and sampling: DMA  METHOD FAST and DMA METHOD SLOW. Which mode is
used depends on the sampling frequency of the project. DMA METHOD_ SLOW was used
when the sampling could not obtain 1024 samples before the next screen update. In order to
compensate, this mode used Ping-Pong buffers to transmit 256 samples at a time. This way, the
DSP could be performed on a set of samples while attempting to obtain more samples.

DMA METHOD FAST was used when the sampling speed was fast enough to obtain 1024
samples before the next screen update. Only one buffer of size 1024 is used instead of two size
256 buffers. For our radar project, only DMA METHOD FAST was used. This is because the
screen update for the radar is much slower than that our the EuphonistiHack Frequency

Analyzer, 1 Hz instead of 15 Hz.

While porting code, however, there were a lot of errors involving the variable types and naming.
For example, in the gui code for the EuphonistiHack project, the sRect struct has an element
sYMin. When compiling for the Tiva, however, this throws an error. This is because Tivaware
and Stellarisware structs have different element names. In Tivaware, sYmin is i16YMin. While
porting code over, this document by TI is used:

http://www.ti.com/lit/an/spma050a/spma050a.pdf.



http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-TM4C123G-LaunchPad/TM4C123G_LaunchPad_Workshop_Workbook.pdf
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-TM4C123G-LaunchPad/TM4C123G_LaunchPad_Workshop_Workbook.pdf
https://github.com/EuphonistiHack/launchpad-freq-analyzer
https://github.com/EuphonistiHack/launchpad-freq-analyzer
http://www.ti.com/lit/an/spma050a/spma050a.pdf
http://www.ti.com/lit/an/spma050a/spma050a.pdf

Some of the code involving the SPI was borrowed from Stefan and Joe. The code that sets proper
sequence of bits for initialization of the Infineon, for example, is from their code. They also
showed us how to perform the SPI for DACs; that particular piece of code was later modified by
us. Their original code had SPI run in loop as follows (comments are removed for better

visibility):

Jor(:;)
{
inta=0;
while (a <= 4080)
{
GPIOPinWrite(GPIO_PORTF BASE, GPIO _PIN 2, GPIO _PIN 2);
outputValue = a;
ROM_GPIOPinWrite(GPIO_PORTC BASE, GPIO_PIN 6, 0),

data = highByte(outputValue);
data = OxOF & data;
data = 0x30 | data;
writeData(data),
data =lowByte(outputValue),
writeData(data),

ROM_GPIOPinWrite(GPIO PORTC BASE, GPIO PIN 6, GPIO PIN 6);
GPIOPinWrite(GPIO_PORTF BASE, GPIO_PIN 2, 0);

a=at4;

int b = 4080;
while (b >=4)
{
GPIOPinWrite(GPIO_PORTF BASE, GPIO _PIN 2, GPIO _PIN 2);

outputValue = b;
ROM _GPIOPinWrite(GPIO_PORTC BASE, GPIO_PIN 6, 0);



data =highByte(outputValue);
data = OxOF & data;
data = 0x30 | data;

writeData(data),

data =lowByte(outputValue),

writeData(data);

ROM_GPIOPinWrite(GPIO PORTC BASE, GPIO PIN 6, GPIO PIN 6);
GPIOPinWrite(GPIO_PORTF BASE, GPIO PIN 2, 1);
b= b-4;

Since we were originally going to have the SPI code for the DAC running parallel to the
sampling code on the same Tiva, we had to change the DAC code to utilize interrupts instead.

Based on examples in the Tiva workshop, we changed the code to the following:

void
Timer2AIntHandler(void)

{
TimerIntClear(TIMER2 BASE, TIMER TIMA_TIMEOUT);

// If on the rising edge
if (edge) {

// Increment the data bits
outputValue += step;

// Check if at the peak or above the wave
if (outputValue >= peak) {

// Go from rising edge to falling edge



edge = ledge;

a
a

// Else on the falling edge of the wave

else {

// Decrement the data bits
outputValue -= step;

// Check if at zero or below (below zero is bad)
if (outputValue <= 0) {

// Go from rising edge to falling edge
edge = ledge;

a
M else

// Write data
writel2bit(),

// Timer2AIntHandler ()

The above is the interrupt handler for the DAC code. Instead of defining the output value before
a while loop and decrementing inside of the loop, we defined the output value globally. Each
time the interrupt handler is called, outputValue is incremented or decremented depending on

whether the code is currently dealing with the rising or falling edge of the triangle wave.

Both the DAC code and DSP code will be explained in further detail later in the report. These
snippets of code are merely examples of how we borrowed code from various sources and

modified them to our needs.



Organization of Code
The code is organized into several different source files as well as well as their corresponding

header files.

The files arm_common_table.h, arm math.h, cmsis_ccs.h, core_cm0.h, core _cm3.h, core_cm4.h,
core_cmFunc.h, core_cmlnstr.h, and dsplib-cm4f.lib provide the functions for used during signal

processing. All these files are from the EuphonistiHack github.

The files doppler.c and doppler.h hold the main function of the program. They call functions

from the other source files.

The files dac.c and dac.h control the DAC code of the Tiva.

The files dsp.c, dsp.h, sampling.c, sampling.h, ti_hamming windows_vector.c, have to do with
the sampling and DSP code for the Tiva. Much of the code found here is borrowed from the
EuhponistiHack blog.

The files gui.c, gui.h, Kentec320x240x16_ssd2119 8bit.c, Kentec320x240x16 ssd2119_8bit.h,
touch.c, and touch.h deal with properly displaying the results onto the screen. The
Kentec320x240x16_ssd2119 8bit and touch files are from the EuphonistiHack blog.

The remaining files are ustdlib.c, driverlib.lib, grlib.lib, and tm4c123gh6pm_startup cs.c. The
library files are linked files from the Tivaware Library. The ustdlib.c file is also from the
Tivaware library and is used to properly format text strings onto the Kentec display. The last file

contains the interrupt vector table.

Receiver Code

This section will walk through step by step how the receiver code works.

First, the InitBasics() function in doppler.c initializes the clock speed to 80 MHz and allows the

use of floating point calculations, which will be important during the DSP step.

void InitBasics(void) {



ROM FPUEnable();
ROM FPULazyStackingEnable(),

// Set clock to 80 MHz
ROM SysCtlClockSet(SYSCTL SYSDIV 2 5| SYSCTL USE PLL| SYSCTL XTAL 16MHZ
|ISYSCTL_OSC_MAIN);

}// IntiBasics()

Then the initialization of the GUI is performed in the functions InitGui() and InitGuiTimer(),
both found in gui.c.

void InitGui(void){

/

// Initialize LCD screen

/
Kentec320x240x16_SSD21191nit();

TouchScreenlnit(),
TouchScreenCallbackSet(WidgetPointerMessage);

/

// Add Widgets to screen.

/

WidgetAdd(WIDGET ROOT, (tWidget *)&g sBackground);
WidgetAdd((tWidget *) &g sBackground, (tWidget *)&g sTitle),
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sSampFreq),
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sReceivedFreq);
WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sSpeed);
WidgetPaint(WIDGET ROOT),

/
// Update Sampling Frequency



/

usprintf(sampFreqText,"SampFreq: %d", g uiSamplingFreq),
CanvasTextSet(&g sSampFreq, sampFreqText);
WidgetPaint((tWidget *)&g sSampFreq);

M/ InitGui

InitGui() first calls Kentec320x240x16_SSD2119Init(), which is from
Kentec320x240x16_ssd2119 8bit.c, which is from the Euphonitihack blog. How
Kentec320x240x16_SSD2119Init() works is not too important; it enables pins on port A and B,

writes to the Kentec display and turns it on.

TouchScreenlnit() is a bit problematic. This is a function from touch.c, found on both the
EuphonistiHack Github and the Tiva Workshop. The problem is that the two touch.c files are
different. In the original Tiva Workshop version of touch.c, the TouchScreenlnit() prepares and
ADC with the following code:

ADCSequenceConfigure(ADCO _BASE, 3, ADC TRIGGER _TIMER, 0);
And later ....

TimerConfigure(TIMERI BASE, (TIMER CFG _SPLIT PAIR |

TIMER CFG A PERIODIC |

TIMER CFG B PERIODIC));
TimerLoadSet(TIMERI BASE, TIMER A, (SysCtiClockGet() / 1000) - 1);
TimerControlTrigger(TIMERI BASE, TIMER A, true);

The Kentec display needs to use an ADC on the Tiva in order to process finger presses; where
and how hard the finger press on the touchscreen corresponds to an analog voltage value, which
is then converted to a digital value on the Tiva through an ADC. The ADC is called every one
millisecond through Timerl. Using TimerControlTrigger(), the ADC is hardware triggered,

meaning that it bypasses the CPU or processor.

The code from touch.c from EuphonisticHack is different as seen here:



ADCSequenceConfigure(ADCI1 BASE, 3, ADC TRIGGER PROCESSOR, 1);

And later ....

void
Timerl1AIntHandler(void)
{
// Clear interrupt
TimerIntClear(TIMERI BASE, TIMER TIMA TIMEOUT);

// Trigger ADC to sample
ADCProcessorTrigger(ADCI _BASE, 3);
}// TimerlAIntHandler()

Instead of having the ADC be hardware triggered, the ADC is software triggered. When the
ADC was hardware triggered using TimerControlTrigger(), Timer1 did not need at interrupt
handler because the CPU was always bypassed when Timerl calls the ADC. Now, Timerl calls
Timerl AlntHandler(), which manually calls the ADC with ADCProcessorTrigger(). The reason
for this is because the DSP needs to use an ADC as well. Notice that TimerControlTrigger() does
not have any function parameters; it does not differentiate between ADCs. So when
TimerControlTrigger is called with both ADCs being hardware triggered, both the touchscreen
and DSP ADC will be called. In order to prevent that, only the DSP ADC is hardware triggered

and the touchscreen ADC is software triggered.

Going back to InitGui(), the next function is TouchScreenCallbackSet(). It also initializes the
touchscreen for processing presses. Since the touchscreen does not work, which will be

explained later, it is not important how this function works.

The next few lines of code attaches the canvases to the widget tree. Canvases are rectangles that
show up on the the Kentec Display. They can be modified to have different colors or show text.
They are defined in the Graphics section of the Tivaware library. They are initialized as a global

struct as seen here:



Canvas(g _sSampFreq, 0, 0, 0,
&g sKentec320x240x16 _SSD2119, 0, 40, 320, 40,
(CANVAS STYLE FILL | CANVAS STYLE OUTLINE | CANVAS STYLE TEXT),
ClrBlue, ClrWhite, ClrWhite, g _psFontCm20),
sampFreqText, 0, 0);

This particular canvas is for displaying the sampling frequency on the screen. When the line of
code, WidgetAdd((tWidget *)&g sBackground, (tWidget *)&g sSampFreq); runs, the this
canvas becomes a child of the background canvas. This means that when displaying different
canvases on the Kentec display, the box containing the sampling frequency is above the

background picture.

The last few lines of InitGui() are:

usprintf(sampFreqText,"SampFreq: %d", g uiSamplingFreq),
CanvasTextSet(&g sSampFreq, sampFreqText);
WidgetPaint((tWidget *)&g sSampFreq);

Usprintf() is from the file ustdlib.c. The function works much like sprintf() in the C library,
which allows the conversion from integer to float. If one were to use the sprintf() function,
however, nothing shows up on the Kentec display. It appears that the normal sprintf() function

does not format the string correctly on a Tiva.

CanvasTextSet is macro found in the Graphics library which updates a canvas with a new string.
The reason that this macro is needed is because normal pointer reassignment does not work with
the Canvas struct. The canvas struct takes in a const char pointer for the its string, which means
that the string cannot update during runtime. Since the canvas struct is created at compile time,
we could not dynamically construct a new Canvas during runtime. The workaround is to use this
macro which creates a new const char pointer based on the new string and reassigns it to the

struct.

The last part, WidgetPaint() simply updates the screen based on the Canvas parameter. Passing in

the the Sampling Frequency Canvas means that only that particular canvas in updated.



The next function to discuss is InitGuiTimer() which is shown here:

void
InitGuiTimer()

{
// Enable the timer

SysCtlPeripheralEnable(SYSCTL PERIPH TIMER3),

// Full Width Periodic Timer using Timer
TimerConfigure(TIMER3 BASE, TIMER CFG_PERIODIC);

// Set timer
TimerLoadSet(TIMER3 BASE, TIMER A, SysCtlClockGet()-1);

// Enable the gui interrupt
IntEnable(INT _TIMER3A),

// When timer hits zero, call interrupt

TimerIntEnable(TIMER3 BASE, TIMER TIMA TIMEOUT),

// Start the gui timer
TimerEnable(TIMER3 BASE, TIMER A);
Y/ InitGuiTimer()

The code here is pretty straightforward. It sets Timer3 to trigger at a rate of one Hz. Each time

Timer3 hits zero, updateGui() is called:
void updateGui(void) {

/

// Update Received Frequency

/"
usprintf(reFreqText,"ReFreq: %d", reFreq);
CanvasTextSet(&g sReceivedFreq, reFreqText);



WidgetPaint((tWidget *)&g sReceivedFreq),

/

// Update Received Frequency

/

usprintf(speedText, "Speed: %d", speed),
CanvasTextSet(&g sSpeed, speedText),
WidgetPaint((tWidget *)&g sSpeed),

M/ updateGui()

Much like in the later part of InitGui(), this function updates the calculated frequency of the

received signal as well as the calculated speed.

Now that the Kentec display is on and the GUI timer is ticking down, the next step is to initialize
the DSP and sampling. This is achieved by InitDSP(), InitSamplingTimer(), and
InitADC3Transfer().

InitDSP() is simple, as seen here:
void InitDSP(void){

// Determine the
g HzPerBin = (float)g uiSamplingFreq / (float)NUM_SAMPLES;

// Call the CMSIS real [ft init function
arm_rfft init f32(&fftStructure, &cfftStructure, NUM_SAMPLES, INVERT FFT,
BIT ORDER FFT),

1/ InitDSP()

When the 2048 point FFT function is called, the output is a spectrum with 2048 bins. The range
of each frequency that each bin represents depends on the sampling frequency divided by the



2048. g HzPerBin is that value. The other function is a function from the DSP library which

initializes the FFT function.

The next step is to initialize the sampling timer, as follows:

void
InitSampling Timer()
{
// Enable the timer(

SysCtlPeripheralEnable(SYSCTL PERIPH TIMERO);

// Full Width Periodic Timer using Timer(
TimerConfigure(TIMERO BASE, TIMER CFG PERIODIC);

// Enables ADC trigger output
TimerControlTrigger(TIMERO BASE, TIMER A, true);

// Set timer by dividing system clock freq by sampling freq
// to get the # of clock cycles per period
TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g_uiSamplingFreq - 1));

// Enable the sampling interrupt
IntEnable(INT TIMEROA),

// When timer hits zero, call interrupt

TimerIntEnable(TIMERO BASE, TIMER TIMA TIMEOUT),

// Start the sampling timer
TimerEnable(TIMERO BASE, TIMER A);
Y/ mitSampling Timer()

The code is very similar to the GUI timer. One difference is that instead of using timer 3, it uses
timer 0. The other difference is that instead triggering at a rate of one Hz, it is now the Sampling

Frequency.



The next step is to set up the transferring of data between the ADC to the place to be processed.

This is initialized in the following function:

void InitADC3 Transfer(void)
{
// Index of g ulADCValues

unsigned int uldx;

// Set data as not ready to be processed
g ucDataReady = 0;

// Init buffers by setting them all to 0
// Should go from 0 to 2048
for(uldx = 0; uldx < NUM_SAMPLES; uldx++)

{
g ulADCValues[uldx] = 0;

W for

// Configure and enable the uDMA controller
SysCtlPeripheralEnable(SYSCTL PERIPH UDMA),

// Enable the uDMA error interrupt
IntEnable(INT UDMAERR);

// Enable uDMA
uDMAEnable(),

// Sets the base address of the control table
// The control table is the 1024-byte-aligned base address
// that was set up with a preprocessor statement earlier

uDMAControlBaseSet(ucControlTable);

/



// Configure the ADC to capture one sample per sampling timer tick
// which is controled by Timer(
/

// Enable and reset the ADC
SysCtlPeripheralEnable(SYSCTL PERIPH ADCO0);
SysCtlPeripheralReset(SYSCTL PERIPH ADCO0);

// Set up the ADC so that it will sample when Timer( times out
// It is Timer(Q which activates the ADC because it was configured
// with TimerControlTrigger()
ADCSequenceConfigure(ADCO_BASE, ADC SEQUENCER,
ADC TRIGGER TIMER,0);
ADCSequenceStepConfigure(ADCO _BASE, ADC SEQUENCER, 0, ADC CTL CHO |
ADC CTL IE| ADC CTL _END);

// Enable the sequencer

// ADC _SEQUENCER should be 3
ADCSequenceEnable(ADC0O_BASE, ADC SEQUENCER),
ADClIntEnable(ADCO_BASE, ADC SEQUENCER);

/
// Configure the DMA channel
/

uDMAChannelAttributeDisable(UDMA_CHANNEL ADCS3,
UDMA_ATTR ALTSELECT |
UDMA _ATTR _USEBURST |
UDMA_ATTR_HIGH PRIORITY |
UDMA_ATTR REQMASK);

// Use primary data structure for ADC3
// Uses 16 bit words
// Do not increment source address

// Increment destination address by 16 bits



// What's arbitration size

uDMAChannelControlSet(UDMA_CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _SIZE 16| UDMA _SRC INC NONE |
UDMA _DST INC 16 | UDMA _ARB 1),

// Use primary data structure and use ADC3
// Use basic transfer
// Source is something to do with ADC3 address
// Destination is g ulADCValues
// Transfer UDMA XFER MAX (1024) samples
uDMAChannelTransferSet(UDMA CHANNEL ADC3 | UDMA PRI SELECT,
UDMA MODE BASIC,
(void *)(ADCO_BASE + ADC O SSFIFO3
+ (0x20 * UDMA_ARB 1)),
g ulADCValues, UDMA XFER MAX);

// Enable the DMA channel
uDMAChannelEnable(UDMA _CHANNEL ADC3);
M/ InitADC3Transfer()

The first half of the code deals with initializing the uDMA. The uDMA requires a control table
which aligns everything in sets of 1024 bytes and is set in the line

uDMA ControlBaseSet(ucControlTable). This is reason why even though the program performs
2048 point FFT, the uDMA can only transfer up to 1024 samples at a time. The interrupt in the
function IntEnable(INT UDMAERR) does not actually control the transfer of data for the ADC
but deals with errors generated by the uDMA. g ucDataReady is set to zero to signify that there

are not enough samples for the signal processing to begin.

The second half of the code deals with how the sampling and transferring of data should be like.
ADCSequenceStepConfigure() sets the ADC so that ADCO is used, it will only take one sample
at a time, put the value in the sequencer 3 (which is a buffer which only holds one sample), and

that the ADC will be controlled by an interrupt. uDMAChannel TransferSet makes it so that the



uDMA always takes a sample from the same place, the ADC, and puts the sample into

g ulADCValues, moving one space over each time.

While in the context of the ADC, it is important to introduce the ADC interrupt handler which

will be called after 1024 samples are obtained.

void

ADC3IntHandler(void)

{
unsigned long ulStatus;
static unsigned long uluDMACount = 0;
static unsigned long ulDataXferd = 0;
unsigned long ulNextuDMAXferSize = 0;

// Clear the ADC interrupt
ADCIntClear(ADCO _BASE, ADC SEQUENCER);

// If the channel's not done capturing, we have an error
if(uDMAChannellsEnabled(UDMA CHANNEL ADC3))

{

// Increment error counter

g ulBadPeriphlsr2++;

// Disable the ADC interrupt
ADClIntDisable(ADCO_BASE, ADC SEQUENCER);

// Drop pending interrupts associated with ADC0
IntPendClear(INT ADCOSS3),

// Exit interrupt

return,

a



ulStatus = uDMAChannelSizeGet(UDMA_CHANNEL ADC3);

// If non-zero items are left in the transfer buffer

// Something went wrong
if(ulStatus)

{

// Increment error counter

g ulBadPeriphlsrl++;

// Exit interrupt handler

return,

Rz

// Disable the sampling timer
TimerDisable(TIMERO BASE, TIMER A);

uluDMACount++;
// The amount of data transferred increments in sets of 1024

ulDataXferd += UDMA_XFER MAX;

if(NUM_SAMPLES > ulDataXferd)
{

if((NUM_SAMPLES - ulDataXferd) > UDMA XFER MAX)

{
ulNextuDMAXferSize = UDMA _XFER MAX;

ez

else



Wi

else

ulNextuDMAXferSize = NUM_SAMPLES - ulDataXferd;
M/ else

uDMAChannelTransferSet(UDMA_CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _MODE BASIC,
(void *)(ADCO BASE + ADC O SSFIFO3
+ (0x20 * UDMA _ARB 1)),
g ulADCValues + (UDMA _XFER MAX *
uluDMACount),
ulNextuDMA XferSize);

// Enable channel with new settings

uDMAChannelEnable(UDMA _CHANNEL ADC3);

// Reset the timer to maximum

TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g uiSamplingFreq - 1));

// Enable the timer with new settings

TimerEnable(TIMERO BASE, TIMER A);

// Since data will be processed, set counters back to 0
uluDMACount = 0;
ulDataXferd = 0,

// Disable sampling for now while processing

ADCIntDisable(ADCO _BASE, ADC SEQUENCER);

// Remove pending interrupts for the ADC
IntPendClear(INT _ADCO0SS3);



// Signal that we have new data to be processed
g ucDataReady = 1,
M else

1}/ ADC3IntHandler()

There are two main parts to the interrupt handler. One part runs when there is not enough
samples to run the DSP. The other runs when there is enough samples in g ulADCValues to run

the DSP.

The if block runs when there is only 1024 samples in g ulADCValues. Since there needs to be
2048 samples before the data can be processed, the program must start sampling again. It seems
that 1024 samples is the maximum number of samples that can be transferred at a time before
uDMA has to be restarted again because the uDMA control table is only 1024 bytes in width.
The uDMAChannelTransferSet() function restarts the transferring of data into the next 1024
blocks in g ulADCValues.

The else block runs when there is 2048 samples in g ulADCValues. Since there are enough
samples to perform FFT, the sampling and uDMA transfer is turned off until the data can be

processed.

Now that everything has been initialized and the ADC interrupt handler has been introduced, the

next step is to have an infinite while loop run as seen here:

while(1)
{
if(g_ucDataReady)
{
ProcessData(),
a

WidgetMessageQueueProcess(),
J// while



At various points through the while loop, interrupts will trigger based on the frequency set
earlier. For example, before the if statement is processed, a hardware trigger will interrupt 1024
times, making the ADC sample each time. After 1024 times, the ADC interrupt handler will be
called. Since there are less than 2048 samples, the sampling will resume. The touchscreen ADC
interrupt is called, attempting to trigger the ADC, but fails. Evaluating the if statement,

g ucDataReady is still False because there are not enough samples. It skips over to
WidgetMessageQueueProcess() which looks for any touchscreen finger presses. There are none

because the touchscreen is broken, so the loop starts again.

The gui updates, but there is nothing to print yet. Another 1024 samples are obtained so the ADC
interrupt handler is called again. With 2048 samples, the ADC turns off. The if statement

evaluates to True. So ProcessData() runs.

ProcessData() is defined in dsp.c and is presented here:

void ProcessData(void){

// For indexing
uint32 ti;

// For finding bin with highest power
float32 t maxValue;

for(i=0;i<NUM_SAMPLES;i++)
{

g fFFTResult[i] = ((float)g ulADCValues[i] - (float)0x800),// / (float)640;
M/ for

// Multiply samples by hamming window
arm_mult f32(g fFFTResult, ti_hamming window vector, g fFFTResult, NUM SAMPLES),

// Calculate FF'T on samples
arm_rfft _f32(&fftStructure, g fFFTResult, g fFFTResult);



// Calculate complex power of FFT results
arm_cmplx_mag f32(g fFFTResult, g fFFTResult, NUM_SAMPLES * 2);

// find the maximum bin
arm_max_f32(g fFFTResult, NUM SAMPLES, &maxValue, &i),;

// Update received frequency
reFreq = (int)(1.205*g HzPerBin*i),

// Update speed

// Cast integer variables as floats to have more accurate division

// 24 GHz tranmitted

speed = (((float)reFreq/(float)g uiSamplingFreq) - 1.0)*2400000000.0;

// Clear the data ready bit and set up the next DMA transfer
g ucDataReady = 0;

uDMAChannelTransferSet(UDMA _CHANNEL ADC3 | UDMA PRI SELECT,
UDMA _MODE BASIC,
(void *)(ADCO_BASE + ADC _O_SSFIFO3 +
(0x20 * UDMA _ARB 1)),
g ulADCValues, UDMA XFER MAX);

// Enable the timer and start the sampling timer

uDMAChannelEnable(UDMA _CHANNEL ADC3);

TimerLoadSet(TIMERO BASE, TIMER A, SysCtlClockGet()/(g_uiSamplingFreq - 1));
TimerEnable(TIMERO BASE, TIMER A);

}// ProcessData()

ProcessData() first subtracts all the sampled data by 0x800, which is approximately 1.5 V based
on a scale from 0 to 3.3 V. The data is then multiplied by a hamming window in order to
removed the low frequency components. This hamming window is an array of values taken from

EuphonistiHack. Afterwards, FFT is performed on the data set. The program then searches for



the index with the maximum power. This bin corresponds to the frequency of the input signal.
By multiplying with the g HzPerBin, the input frequency is obtained. For some reason, the
frequency obtained is always off by a constant factor. This factor is determined experimentally
and is used to correct the result. The speed is calculated from this result. ADC and uDMA is

restarted and ProcessData() exits.

Back to the while loop, updateGui() runs and prints the received frequency and the speed onto

the screen. And it loops back to the beginning.

Transmitter Code

Compared to the receiver code, the transmitter code is much simpler. The only initialization is
two functions, InitSSI() and InitDACTimer().

InitSSI() configures certain pins for SPI, as seen below.

void InitSSI()
{
// for CLK and data
ROM _SysCtlPeripheralEnable(SYSCTL PERIPH SSI3);

// Delay for peripheral to initialize
SysCtlDelay(3);

// enable slave select port
ROM SysCtlPeripheralEnable(SYSCTL PERIPH GPIOD);

// Delay for peripheral to initialize
SysCtlDelay(3);

// Enable NEW SS pin as GPIO
GPIOPinTypeGPIOOutput(GPIO _PORTD BASE, GPIO PIN 1| GPIO PIN 2|
GPIO _PIN 6);

// Configure pin to transmit (MOSI)
GPIOPinConfigure(GPIO PD3 SSI3TX);



// Configure pins to be used as SSI Clock and Data
GPIOPinTypeSSI(GPIO_PORTD BASE, GPIO _PIN 0| GPIO PIN 3);

// Initializes SSI

// Parameters are:  base address of the SSI

// the clock supplied to the SSI

/ data frame format

// configure SSI as master as opposed to slave

// the bit rate (should be lower than system clock by at least factor of
/Y 4)

// word size

SSIConfigSetExpClk(SSI3_BASE, SysCtiClockGet(), SSI FRF MOTO MODE 0,
SSI MODE MASTER, SysCtlClockGet()/4, 8),

// Configure pin as a clock
GPIOPinConfigure(GPIO_PD0 _SSI3CLK);

// Enable SSI
ROM SSIEnable(SSI3_BASE),

ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO _PIN 6, 0); //SS low
writeData(0x00); // Send the upper byte

writeData(0x18); // Send the lower byte
ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN 6, GPIO_PIN 6, //SS High

2/ InitSSI()

The SPI clock is set to transmit at an eighth of the system clock through PDO. The data is set to
transmit through PD3 with a work size of one byte. PD1, PD2, and PD6 are all configured as
chip select pins. The first two are for the two 16 bit DACs and the last one is for the Infineon.
The Infineon only needs to be initialized once. This is done by writing 0x00 and 0x18 to the

Infineon.



The initialization of the DAC timer is much like the previous timers and is presented below:

void
InitDACTimer(void)
{
const uint32_t timerFreq = 10000;
uint32 _t ui32Period; // Determines the cycles

// Enable the configuration of Timer?2
SysCtlPeripheralEnable(SYSCTL PERIPH TIMER?2);

// It loads
TimerConfigure(TIMER2 BASE, TIMER CFG PERIODIC);

// Divide system clock freq by constant to get # of clock cycles
// for the timer to count down

ui32Period = SysCtlClockGet() / timerFreq,

// Set it to the clock frequency
TimerLoadSet(TIMER2 BASE, TIMER A, ui32Period -1),;

// Enable the interrupt associated with this timer
IntEnable(INT TIMERZ2A),

// Set the interrupt to be called when the timer
// runs out

TimerIntEnable(TIMER2 BASE, TIMER TIMA_TIMEOUT);

// Enable the timer
TimerEnable(TIMER2 BASE, TIMER A);

M/ InitDACTimer()



The timerFreq variable can be changed to alter the frequency of the triangle wave. By increasing

the frequency of new DAC values, the frequency of the triangle wave should increase as well.

When the program enters the while loop, the receiver code should run. At certain intervals, the

DAC interrupt triggers, calling the interrupt handler seen here:

void
Timer2AIntHandler(void)
{

// Clear the timer interrupt.

TimerIntClear(TIMER2 BASE, TIMER TIMA_TIMEOUT);

// If on the rising edge of the wave
if (edge) {

// Increment the data bits
outputValue += step;

// Check if at the peak or above the wave
if (outputValue >= peak) {

// Go from rising edge to falling edge
edge = ledge;

Wi
Rz

// Else on the falling edge of the wave
else {

// Decrement the data bits
outputValue -= step;

// Check if at zero or below (below zero is bad)



if (outputValue <= 0) {

// Go from rising edge to falling edge
edge = ledge;

a
M else

// Write data
writel 6bit(),

M/ Timer2AIntHandler ()

As explained earlier, the first part of the code checks whether the program should printing out
values for the rising or falling part of the triangle wave. Depending on whether the program is on
the rising or falling edge of the wave, the outputValue is either incremented or decremented. The
there is some logic to check whether the program is at the peak or trough of the wave. If the
outputValue is above 2(N bits)-1 or below zero, the program switches to either the falling or

rising edge respectively.

The last part of the interrupt handler is either write12bit() or write16bit(), depending on the
which DAC is being used. If the 12 bit DAC is being used, then the code becomes something
like this:

void write12bit(void)

{
ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN 1, 0); //SS low

// 12 bit DAC

data = highByte(outputValue); // Take the upper byte
data = Ox0F & data;

data = 0x30 | data;

writeData(data); // Send the upper byte



data = lowByte(outputValue), // Shift in the 8 lower bits
writeData(data); // Send the lower byte

ROM_GPIOPinWrite(GPIO_PORTD BASE, GPIO PIN 1, GPIO PIN 1); //SS High

M/ writel 2bit()

The 12 bit DAC has 4 control bits and 12 bits of data. The control bits are always 0011 and the
data bits depends on the outputValue. The CS is set low to write and set high when finished. This

particular piece of code only shows setting one DAC at a time. In order to test the Infineon, we

set the other input of the VCO to Vcc for convenience.
Writing to the 16 bit DAC is similar as seen here.

void writel 6bit(void)
{
ROM _GPIOPinWrite(GPIO_PORTD_BASE, GPIO _PIN 1, 0); //SS low
writeData(0x00); // Control bits
writeData(outputValue), // Send the upper byte
writeData(outputValue);, // Send the lower byte
ROM _GPIOPinWrite(GPIO_PORTD _BASE, GPIO _PIN 1, GPIO _PIN 1); //SS High

J// writel 6bit()

Instead of having 12 data bits, there are 16 data bits. There are two control bits that are supposed
to be 00 and six don’t care bits, so the 0x00 is written in first.

Conclusion

Hopefully this application note is of use any student that reads this. While our radar did not work
properly, I hope that this application note will help you succeed in your senior design project.



