
Proximity Detector via Frequency Modulated Continuous

Wave (FMCW) Radar

Group: Mansoor Wahab, David Rangel, Daniel Kuzmenko, Michael Moon

danielkuzmenko@gmail.com, drangelalarcon@gmail.com

 mansoorw1992@hotmail.com, mfmoon1@gmail.com

Abstract

In this project a frequency modulated continuous wave (FMCW) radar was designed and built to

be used with Arduino microcontrollers. FMCW is a radar system where a frequency modulated

signal is mixed with an echo from a target to produce a beat signal. The operating frequency is

chosen to be at 2.5GHz with the modulation bandwidth of 700 MHz starting at 2.1-2.8GHz. The

design shield gets sandwiched between an Arduino Uno on the top and the Arduino Due on the

bottom. The Arduino Uno is used to control an oscillator which modulates the 2.5GHz tone and

the Due is used to sample the mixer output signal (after LPF), which has a frequency dependent

of the distance of the object, and then send the data to the computer via Bluetooth. This radar

was designed to be used as a proximity detector but because of the frequency modulation nature

it can be used also to measure speed.

Introduction:

 Frequency modulated continuous wave (FMCW) radar is variant of a continuous-wave

radar. Continuous-wave (CW) radar is a type of radar system where a known stable frequency

continuous-wave energy is transmitted and then received from any reflecting objects.

CW radar

uses Doppler Effect to measure speed. Return frequencies are shifted away from the transmitted

frequency based on the Doppler Effect when objects are moving. There is no way to evaluate

distance so frequency modulation is added to the outgoing wave.

(Change of frequency caused by the motion of the target)

In the FMCW system, the transmitted signal of a known stable frequency continuous wave

which varies up and down in frequency over a fixed period of time by a modulating signal.

Frequency difference between the received signal and transmitted signal increases with delay,

mailto:danielkuzmenko@gmail.com
mailto:drangelalarcon@gmail.com
mailto:mansoorw1992@hotmail.com
mailto:mfmoon1@gmail.com

and hence with distance. There are many different modulation patterns which can be used in

 FMCW radar.

Sawtooth

Triangle

Square-wave

Stepped modulation

For this design the modulation pattern that was chosen was a combination of the triangle and the

stepped modulation. This modulation pattern allows for easy separation of the delta frequencies

on the rising and the falling edge so distance and speed could be extracted at the same time.

In the figure above an echo signal is shifted due to the running time compared to the

transmission signal to the right (green is the echo and red is the transmission signal). Without a

Doppler frequency, the amount of the frequency difference during the rising edge is equal to the

measurement during the falling edge. A Doppler frequency shifts the echo signal in height

(green graph in the figure). It appears the sum of the frequency difference Δf and the Doppler

frequency fD at the rising edge, and the difference between these two frequencies at the falling

edge. This opens up the possibility of making an accurate distance determination, despite the

frequency shift caused by the Doppler frequency, which then consists of the arithmetic average

of the two parts of measurements at different edges of the triangular pattern. Knowing the Δf

and the BW of the system, one can simply calculate the distance using a formula shown below.

Where T-modulation is the half period of the modulation triangle, Δf is as described above, and

the BW (bandwidth) is how much the signal is modulated around 2.5GHz.

 At the same time the accurate Doppler frequency can be determined from two measurements.

The difference between the two difference frequencies is twice the Doppler frequency. This leads

to the calculation of speed as follows

Where fD is the Doppler shift and fo is the starting frequency. A block diagram of FMCW radar is

shown below.

 A voltage controlled oscillator (VCO) is used to modulate the RF signal around 2.5GHz. This

signal is then amplified and sent to a power splitter where the signal is split into two. The first is

used as the transmission signal and the other as a local oscillator for a mixer. Once the echo

signal returns to the receiver, it passes through a low noise amplifier and then gets mixed down

to an intermediate frequency. This IF is then passed through a low pass filter to get rid of the

entire high order spurious signal. At this point the signal is so small that it needs to be amplified

so it passes through a baseband amplifier. Next, the signal gets digitized and is processed to

extract the Δf and the fD. The DSP can be performed on the computer since sound cards have

high-sampling rate ADCs. However since the computer is not portable, it is practical to use

microcontrollers and FPGAs.

Description of the Project:

Our project is a FMCW radar shield for the Arduino Due able to precisely detect an

object’s distance up to 15 meters, updating the distance measurement twice a second. The shield

is a compact PCB with the analog system on it, using surface mounted and a few through-hole

components. The system is fairly self contained and can send data to a laptop or cell phone using

a Bluetooth connection.

Design details:

The RF/Analog portion is based from a typical FMCW radar schematic which we

prototyped in the first ten weeks. The prototype operates at a frequency band of 2.3 to 2.7 GHz,

uses the Arduino Uno to control the A/D and create the triangle wave, uses the computer sound

card to sample the IF signal, and finally processes the information in Matlab.

The new system operates at 2.1 to 2.8 GHz, uses the Arduino Uno still to control the A/D, and

utilizes the Arduino Due and a D/A for sampling the IF signal. The A/D has a 16 bit resolution to

ensure that even the smallest signal gets digitized. Sampled data is stored in the Due and is later

transmitted over the Bluetooth chip to a laptop to finish the signal processing. The FFT can also

be done on the Arduino Due, though for presentable results the laptop processes the data and

displays the information. The Due and Computer must work in tandem to sample, transmit, take

the fft and then display the data. This is done by code in Matlab that first queries the Due to send

the data over. The Due then transmit previously sampled data for Matlab to take the fft. Once the

fft is calculated, Matlab takes the magnitude of the data and plots a range-time intensity plot.

This plot also has data from the previously transmitted samples so that one could see how things

have changed. While Matlab is busy calculating the fft and plotting data, the Due code is

sampling new data so that when Matlab queries for data the Due will already have the sampled

data ready to transmit with no delay.

To create this schematic on an Arduino Due shield, we found surface mounted component

versions of these blocks from Minicircuits. In order for the components to work together, we

needed to choose the components to match our desired frequency band of 2.1 to 2.8 GHz,

operate on 5V DC power supply, match to 50 Ohm impedance, and deliver the right amount of

power to one another.

The IC components used are as follows:

● VCO: JTOS-3000 - This voltage controlled oscillator is rated for 2.3 to 3 GHz

controlled with a voltage between .5 and 12 Volts. The outputted signal power is about

10dBm. For our project we are controlling it from .69 to 5 Volts and getting a range of

roughly 2.1 to 2.8 GHz.

● Power AMP/Low Noise AMP: TAMP-272LN+ - Our low noise amplifier, which we

are also using as a power amplifier, gives around 14dB of gain within the 2.3 to 2.7 GHz

band. It has a small noise figure of .85dB, a one dB compression point of 19.5dBm, and

an output IP3 of 30 dBm.

● Mixer: RMS-42MH+ - This is a double balanced mixer able to take a wide band of .8 to

4.2 GHz. It is passive, and requires a LO signal of 13dBm in order to create the mixing

products, which usually has about 5.3 dB conversion loss.

● Power Splitter: SP-2U2+ - This power splitter operates at 1720 to 2850 MHz, creates an

even power split and has a 50 ohm match at each port. It has an insertion loss of about .7

dB from each port.

● Attenuator: GAT-5+ - These are small 50 ohm matched attenuators which add 5 dB of

attenuation between the power amp and the mixer to avoid overpowering the mixer, and

between the VCO and the power amp to avoid pushing the power amp to the 1dB

compression point.

● Op Amps: OPA4228 - This op amp IC has 4 different op amps in it that have low noise

of 3nV/Hz^.5, and a high open loop gain of 160dB. These op amps are used on the board

to create a two stage IF amplifier, and another is used to create a virtual ground for that

amplifier at (VCC+Ground)/2

● ADC: ADS7813 - This is a 16-bit Analog to Digital converter that can sample at 40kHz.

For this project we were able to implement it with the Arduino Due to sample at 25kHz,

which is more than fast enough to sample our IF signal which is at 5kHz.

● DAC: MCP4921 - This is a 12-bit Digital to Analog converter with an SPI of 20 MHz.

This chip is still controlled by the Arduino Uno in our project, and thus the SPI

connection is limited by the Uno’s 16MHz clock.

The low pass filter used after the amplification of the IF signal is a passive lumped-component

low pass filter. It is designed as a fourth order maximally flat filter, with a 3dB cutoff around

15kHz, with the IF signal coming out below 5kHz.

There are also DC blocks, 22uF capacitors in series with the system to block the DC component

coming out of the mixer. This also helps attenuate the 60Hz noise signal coming from the

triangle wave.

The following picture is the EAGLE schematic for the entire system. The analog portion has the

same signal flow as the block diagram given below. The DAC is being fed from the Arduino

Uno (which is the same block as the DUE in the schematic below) and the ADC is feeding to

both the Arduino Due and the ADC, which is controlled by the Arduino Due.

The EAGLE PCB layout is given below. The RF portion is isolated from the low

frequency/digital portion by means of separate grounds and multiple vias. The holes on the top

and bottom are all there for the Arduino connections, and the left side holes are there for the

Bluetooth module connection.

Test/Measurement Results:

The very first iteration of this radar project was the MIT connectorized prototype which

was assembled from scratch. The RF front end was all connectorized Mini-circuits components

with the baseband amplifier and the low pass filter built on the breadboard.

This system was designed for post-processing so the signal needed to be sampled by a computer

via an audio card and then ran in Matlab to get a range-time intensity plot. With this system, we

were able to get a reading distance out to 90 meters, which can be seen in this range vs. time

graph of a moving object:

Our project is a much more compact PCB that fits right in between an Arduino Uno and an

Arduino Due:

With this system, we can constantly update and provide a stream of data, and provide a distance

measurement up to 20 meters, tested on a balcony. We can judge the distance of an object within

plus or minus half a meter. The results of the system are given below, showing range versus time

of a moving object:

The following plot shows the experimental data (distance) from a 2m walk. We ran a Least

Squares regression to fit a curve to the data. This is a vital step since realistic results have some

degree of error between successive samples.

The following shows the theoretical and experimental relationships between distance and

frequency. We see they are very close to each other.

For estimation of the tone frequency, we relied primarily on two algorithms: Frequency estimator

proposed by Rife and Vincent and simple High-Peak Detection. We found High-Peak Detection

to give more accurate results. The following table proves this.

Theoretical

Frequency

High-Peak

Approximation

Frequency

Estimator

Theoretical

Distance

High-Peak

Approximation

Distance

Estimator

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

43.066

129.2

172.27

258.4

301.46

344.53

430.66

473.73

559.86

602.93

646

732.13

775.2

818.26

904.39

947.46

1033.6

1076.7

1119.7

1205.9

1248.9

1335.1

1378.1

1421.2

1507.3

1550.4

1636.5

1679.6

1722.7

1808.8

1851.9

1938

1981.1

2024.1

2110.3

2153.3

105.67

181.56

230.64

310.04

357.43

405.89

482.67

532.51

581.14

656.78

707.8

782.73

832.2

911.73

956.7

1007.2

1084.8

1133.6

1182.7

1259.9

1309.8

1385.1

1434.9

1485.1

1561.4

1610.6

1687.2

1734.9

1785.3

1863.1

1910.9

1987.4

2036.8

2086.6

2163

2211.2

0.080357

0.16071

0.24107

0.32143

0.40179

0.48214

0.5625

0.64286

0.72321

0.80357

0.88393

0.96429

1.0446

1.125

1.2054

1.2857

1.3661

1.4464

1.5268

1.6071

1.6875

1.7679

1.8482

1.9286

2.0089

2.0893

2.1696

2.25

2.3304

2.4107

2.4911

2.5714

2.6518

2.7321

2.8125

2.8929

0.057678

0.17303

0.23071

0.34607

0.40375

0.46143

0.57678

0.63446

0.74982

0.8075

0.86517

0.98053

1.0382

1.0959

1.2112

1.2689

1.3843

1.442

1.4996

1.615

1.6727

1.788

1.8457

1.9034

2.0187

2.0764

2.1918

2.2495

2.3071

2.4225

2.4802

2.5955

2.6532

2.7109

2.8262

2.8839

0.14152

0.24316

0.3089

0.41523

0.47871

0.5436

0.64643

0.71318

0.77832

0.87962

0.94795

1.0483

1.1146

1.2211

1.2813

1.349

1.4528

1.5182

1.5839

1.6873

1.7542

1.855

1.9218

1.989

2.0911

2.157

2.2597

2.3235

2.3911

2.4952

2.5593

2.6617

2.7279

2.7946

2.8968

2.9615

We can see that for high frequencies, the frequency estimator algorithms improves, but still does

not deliver results any close to high-peak estimation. For low frequency, the frequency estimator

is egregious.

Discussion:

Our results show some decent precision in the 0 - 20 meter range, meeting our set goals from the

beginning. In this range it is easy to follow the path someone takes away and towards the

antennas. The system also updates twice per second, meeting our goal of frequent distance

updates.

The biggest limiting factor of the system is currently noise. As the signal goes further and further

out, the IF signal quickly diminishes into the noise floor, limiting how far out we can see. The

signals being transmitted are too high frequency and too high power for the FR-4 material, and

are leaking out into the rest of the board. Another source of noise is our use of attenuators after

generating the FM signal.

Another source of noise is the 60 Hz triangle wave somehow appearing on the IF signal. This can

actually be seen on the measured range vs. time plot in the results as a line going from the top to

the bottom of the graph. The solid red line going from the top left to the bottom left side of the

graph seems to be a near DC constant noise similar to the 60 Hz noise. Fortunately, these are

constant and easily ignorable when looking at a moving target.

Possibility for future extension:

To improve the RF system, the noise should be diminished. In order to do so, following

the discussion of the noise source, a 4 layer board with a better dielectric could be used, to better

contain the RF signals. This would bring the ground plane closer to the RF traces, increase the

capacitance, decrease the size of the RF traces, and increase the isolation between the traces.

Changing the schematic to remove the attenuators would also help eliminate some noise.

If a different mixer were used with a smaller LO power requirement, possibly an active mixer,

then the power amplification could occur after the splitter, and thus all the amplified power

would go to transmitting the signal. This would also help in reducing the amount of high power

RF noise on the board.

Even though the refresh rate is twice a second, this is still not a real time system. After

some timing analysis it was found that it takes the system 30 ms to acquire 700 samples and 400

ms to transfer the data to a computer. Once on the computer, it takes .3 ms to take an fft of the

data and then 5ms to create the plot and all the other necessary calculations. From this timing

analysis it can be seen that the bottleneck in this system is the data transfer rate. A possible way

to improve timing is to use a different communication method. A serial link sends one bit at a

time. What if there was a parallel link? This way multiple bits can be sent over in parallel which

will speed up the process significantly. Another possible solution is compression of the transmit

data. If data can be compressed to say 50% of its original size that would almost cut the data rate

in half. If more compression can be achieved, then the data transfer rate will decrease.

Although this system has the fft taken on the computer, it would be desirable to have the

system itself do the signal processing. The Arduino Due is somewhat limited on this factor

because of its speed and the fact that it does not have a floating point unit. It has been shown that

an fft can be done on the Due, but at a rate of 150ms per 1024 points. An alternative would be to

redevelop the system around a much more powerful signal processing device. FPGA would be a

wonderful choice because of how fast it can calculate an fft. There are also some new systems

coming to the market that have GPUs in microcontrollers that can also calculate ffts with

amazing speeds (nvidia jetson tk1).

Suggestions for this class:

- More Pizza.

- There should be a prize for the team that wins the competition.

- The quarter one labs can be done in a shorter time span, to start designing and building a

system earlier. This would especially be helpful if the class needs to be fit within 2

quarters.

- Encourage ECE students specializing in Digital Electronics to join the project/class. It is

one thing to have a working signal processing algorithm in Matlab and another to actually

implement it on a processor efficiently.

Conclusion:

The radar works! We must say it meets the expectation given we were on a student budget. As

with any engineering system, ours has areas that need to be improved and further developed.

Every member of our team has learned valuable lessons.

Acknowledgements:

MIT radar project

TI Website

Minicircuits Sales Department

